

Click here to ask an associate for production status of specific part numbers.

Precision, Single-Supply, **SPST Analog Switches**

MAX325

General Description

The MAX323/MAX324/MAX325 are precision, dual, SPST analog switches. They are single-supply devices designed to operate from +2.7V to +16V. The MAX323 has two normally open (NO) switches, and the MAX324 has two normally closed (NC) switches. The MAX325 has one NO and one NC switch. Low power consumption (5µW) makes these parts ideal for battery-powered equipment. These switches offer low leakage currents (100pA max) and fast switching speeds ($t_{ON} = 150$ ns max, $t_{OFF} = 100$ ns max).

When powered from a 5V supply, the MAX323 series offers 2Ω max matching between channels, 60Ω max onresistance, and 6Ω max R_{ON} flatness.

These switches also offer 5pC max charge injection, and a minimum of 2000V ESD per Method 3015.7.

For equivalent devices specified for dual-supply operation, see the MAX320/MAX321/MAX322 data sheet. For guad versions of the MAX320 series, see MAX391/ MAX392/MAX393 data sheet.

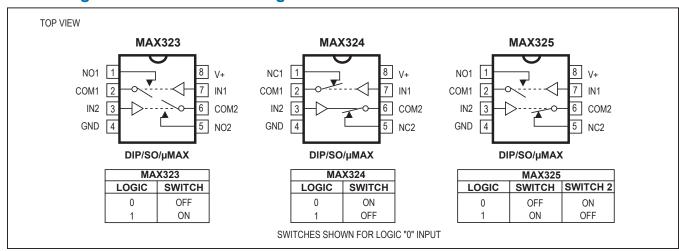
Applications

- Battery-Operated Systems
- Heads-Up Displays
- Audio and Video Switching

 Military Radios
- Test Equipment
- +3V, +5V DACs and ADCs PBX, PABX
- Sample-and-Hold Circuits
- · Guidance and Control Systems
- · Communications Systems

Features

- Low On-Resistance (R_{ON}), 60Ω max (33Ω typ)
- R_{ON} Matching Between Channels <2Ω
- R_{ON} Flatness <6Ω Max
- Guaranteed Charge Injection <5pC
- Single-Supply Operation (+2.7V to +16V)
- Low Power Consumption, <5µW
- Low Leakage Current Over Temperature, <2.5nA at +85°C
- Fast Switching: t_{ON} <150ns, t_{OFF} <100ns
- Guaranteed Break-Before-Make (MAX325 only)
- TTL/CMOS Logic Compatible


Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX323CPA	0°C to +70°C	8 Plastic DIP
MAX323CUA	0°C to +70°C	8 µMAX
MAX323CSA	0°C to +70°C	8 SO
MAX323C/D	0°C to +70°C	Dice*
MAX323EPA	-40°C to +85°C	8 Plastic DIP
MAX323ESA	-40°C to +85°C	8 SO
MAX323EJA	-40°C to +85°C	8 CERDIP**
MAX323MJA	-55°C to +125°C	8 CERDIP**

Ordering Information continued at end of data sheet.

- * Contact factory for dice specifications.
- ** Contact factory for availability.

Pin Configurations/Functional Diagrams/Truth Tables

19-0347; Rev 2; 12/20

Precision, Single-Supply, SPST Analog Switches

Absolute Maximum Ratings

Voltage Referenced to GND
V+0.3V to +17V
IN_, COM_, NC_, NO_ (Note 1)0.3V to (V+ + 0.3V)
Continuous Current (any terminal)30mA
Peak Current, COM_, NO_, NC_
(pulsed at 1ms, 10% duty cycle max)100mA
ESD per Method 3015.7>2000V
Continuous Power Dissipation
Plastic DIP (derate 9.09mW/°C above +70°C)727mW
Narrow SO (derate 5.88mW/°C above +70°C)471mW

CERDIP (derate 8.00mW/°C above +70°C). µMAX (derate 4.10mW/°C above +70°C)	
Operating Temperature Ranges	
MAX32_C	0°C to +70°C
MAX32_E	40°C to +85°C
MAX32_MJA	55°C to +125°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10sec)	+300°C

Note 1: Signals on NC, NO, COM, or IN exceeding V+ or V- are clamped by internal diodes. Limit forward diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics—Single +5V Supply

(V+ = 5V \pm 10%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.)

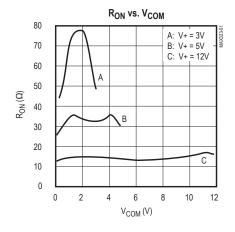
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS		
ANALOG SWITCH									
Analog Signal Range	$V_{\text{COM}}, V_{\text{NO}}, V_{\text{NC}}$	(Note 3)			0		V+	>	
On-Resistance			T _A = +25°C			33 60		0	
On-Resistance	R _{ON}	$I_{COM} = 1.0 \text{mA},$ $V_{NO} \text{ or } V_{NC} = 3.5 \text{V}$	$T_A = T_{MIN} t$	o T _{MAX}			75	Ω	
On-Resistance Match Between Channels (Note 4)	AD	1				0.8	2		
	ΔRON		$T_A = T_{MIN} t$	o T _{MAX}			4	Ω	
On-Resistance Flatness (Notes 3, 5)	R _{FLAT(ON)}	V+ = 5V, I _{COM} = 1.0mA, V _{NO} or V _{NC} = 1V, 2V, 3V	T _A = +25°C	;		2	6	Ω	
			$T_A = T_{MIN} t$	o T _{MAX}			8	12	
NO NO OWI I	I _{NO(OFF)}	V+ = 5.5V,	T _A = +25°C	;	-0.1	0.01	0.1		
NO or NC Off Leakage Current (Note 6)	or		V _{COM} = 1V,	$T_A = T_{MIN}$	C, E	-5		5	nA
ourient (Note o)	I _{NC(OFF)}	V_{NO} or $V_{NC} = 4.5V$	to T _{MAX}	M	-40		40		
V+ = 5.5V,		V+ = 5.5V,	$T_A = +25^{\circ}C$		-0.1		0.1		
COM Off Leakage Current (Note 6)	I _{COM(OFF)}	$V_{COM} = 4.5V,$ $V_{NO} \text{ or } V_{NC} = 1V$	$T_A = T_{MIN}$	C, E	-5		5	nA	
			to T _{MAX}	М	-40		40		
COM On Lookage Current		$V+ = 5.5V,$ $V_{COM} = 5V, or$ $V_{NO} \text{ or } V_{NC} = 5V$	T _A = +25°C		-0.2		0.2		
COM On Leakage Current (Note 6)	I _{COM(ON)}		$T_A = T_{MIN}$	C, E	-10		10	nA	
(Note o)			to T _{MAX}	М	-50		50		

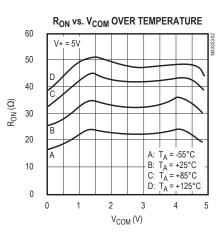
Electrical Characteristics—Single +5V Supply (continued)

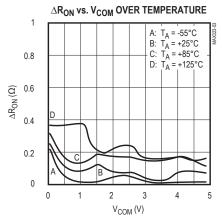
(V+ = 5V \pm 10%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.)

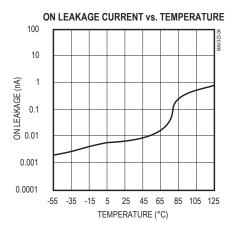
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS
DYNAMIC	,						
Turn-On Time	t	V _{NO} or V _{NC} = 3V	T _A = +25°C		85	150	
Turn-Ori Time	t _{ON}	ANO or ANC - 2A	$T_A = T_{MIN}$ to T_{MAX}			240 ns	
Turn-Off Time	t	V_{NO} or $V_{NC} = 3V$	$T_A = +25^{\circ}C$		25	100	ns
Turri-Oir Tirrie	t _{OFF}	ANO OLANC - 24	$T_A = T_{MIN}$ to T_{MAX}			150	115
Break-Before-Make Time Delay (Note 3)	t _D	MAX325 only, R _L = 3000	2, C _L = 35pF	2			ns
Charge Injection(Note 3)	Q	$C_L = 1.0$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 4	T _A = +25°C		1	5	pC
Off Isolation (Note 7)	OIRR	$R_L = 50\Omega$, $C_L = 5pF$, f = 1MHz, Figure 5	T _A = +25°C		72		dB
Crosstalk (Note 8)		$R_L = 50\Omega$, $C_L = 5pF$, f = 1MHz, Figure 6	T _A = +25°C		85		dB
NC or NO Capacitance	C _{OFF}	f = 1MHz, Figure 7	T _A = +25°C		9		pF
COM Off Capacitance	C _{COM(OFF)}	f = 1MHz, Figure 7	T _A = +25°C		9		pF
COM On Capacitance	C _{COM(ON)}	f = 1MHz, Figure 8	T _A = +25°C		22		pF
SUPPLY							
Power-Supply Range				2.7		16	V
Positive Supply Current	l+	$V+ = 5.5V$, $V_{IN} = 0V$ or $V+$, all channels on or off		-1	0.0001	1	μA
LOGIC INPUT							
Input Voltage Low	V _{INL}					0.8	V
Input Voltage High	V _{INH}			2.4			V

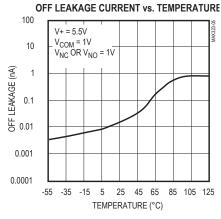
Electrical Characteristics—Single +3.3V Supply

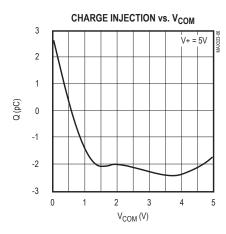

(V+ = 3.0V to 3.6V, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.6V, T_A = T_{MIN} to T_{MAX} , unless otherwise noted.)

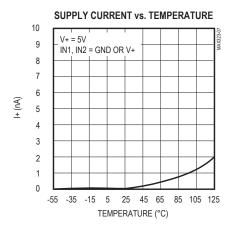

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS	
ANALOG SWITCH	ANALOG SWITCH							
Analog Signal Range	$V_{\text{COM}}, V_{\text{NO}}, V_{\text{NC}}$	(Note 3)	(Note 3)			V+	V	
Channel On-Resistance	Ran	V+ = 3V,	T _A = +25°C		83	175		
Charmer On-Resistance	R _{ON}	$I_{COM} = 1.0$ mA, V_{NO} or $V_{NC} = 1.5$ V	$T_A = T_{MIN}$ to T_{MAX}			275	Ω	
DYNAMIC								
Turn-On Time (Note 3)	t	V _{NO} or V _{NC} = 1.5V	T _A = +25°C		160	400	nc	
Turr-On Time (Note 3)	t _{ON}	VNO 01 VNC - 1.5V	$T_A = T_{MIN}$ to T_{MAX}			500	ns	
Turn-Off Time (Note 3)	t	V_{NO} or $V_{NC} = 1.5V$	T _A = +25°C		40	125	ns	
Turri-Oil Time (Note 3)	toff	VNO 01 VNC = 1.5V	$T_A = T_{MIN}$ to T_{MAX}			175	115	
Break-Before-Make Time Delay (Note 3)	t _D	MAX325 only, $R_L = 300\Omega$, $C_L = 35pF$	T _A = +25°C	2	5		ns	
Charge Injection (Note 3)	Q	C _L = 1.0nF, V _{GEN} = 0V, R _{GEN} = 0V	T _A = +25°C		1	5	рС	
SUPPLY								
Positive Supply Current	l+	$V+ = 3.6V$, $V_{IN} = 0V$ or $V+$, all channels on or off		-1		1	μA	


- **Note 2:** The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
- Note 3: Guaranteed by design.
- **Note 4:** $\Delta R_{ON} = \Delta R_{ON} \text{ max } \Delta R_{ON} \text{ min.}$
- **Note 5:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
- Note 6: Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- Note 7: Off Isolation = 20 \log_{10} [$V_{COM}/(V_{NC} \text{ or } V_{NO})$], V_{COM} = output, V_{NC} or V_{NO} = input to off switch.
- Note 8: Between any two switches.


Typical Operating Characteristics


 $(T_A = +25^{\circ}C, unless otherwise noted.)$





Pin Description

PIN	NAME	FUNCTION		
1	NO1	Normally Open Analog Switch Terminal (MAX323/MAX325)		
'	NC1	Normally Closed Analog Switch Terminal (MAX324 only)		
2, 6	COM1, COM2	Analog Switch Common Terminal		
3, 7	IN2, IN1	Logic Inputs		
4	GND	Ground		
5	NO2	Normally Open Analog Switch Terminal (MAX323 only)		
o o	NC2	Normally Closed Analog Switch Terminal (MAX324/MAX325)		
8	V+	Positive Supply		

Applications Information

Logic Levels

The MAX323/MAX324/MAX325 are TTL compatible when powered from a single +5V supply. When powered from other supply voltages, TTL compatibility is not guaranteed, and the logic inputs should be driven from rail to rail. For example, with a 15V supply, IN1 and IN2 should be driven low to 0V and high to 15V. Similarly, with a 3.3V supply, IN1 and IN2 should be driven low to 0V and high to 3.3V.

Driving IN1 and IN2 rail-to-rail minimizes power consumption.

Analog Signal Levels

Analog signals that range over the entire supply voltage (V+ to GND) can be switched with very little change in on-resistance over the entire voltage range (see *Typical Operating Characteristics*). All the switches are bidirectional, so NO_, NC_, and COM_ pins can be used as either inputs or outputs.

Power-Supply Sequencing and Overvoltage Protection

Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings may cause permanent damage to the devices.

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals or logic inputs, especially if the analog or logic

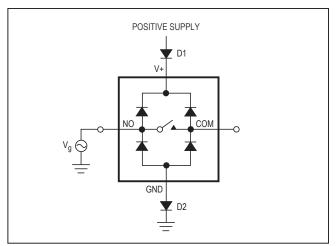


Figure 1. Overvoltage Protection Using Two External Blocking Diodes

signals are not current-limited. If this sequencing is not possible, and if the analog or logic inputs are not current-limited to <30mA, add a small-signal diode (D1) as shown in Figure 1. If the analog signal can dip below GND, add D2. Adding protection diodes reduces the analog signal range to a diode-drop (about 0.7V) below V+ (for D1), and to a diode-drop above ground (for D2). Leakage is unaffected by adding the diodes. On-resistance increases by a small amount at low supply voltages. Maximum supply voltage (V+) must not exceed 17V.

Adding protection diodes causes the logic thresholds to be shifted relative to the power-supply rails. This can be significant when low supply voltages (5V or less) are used. With a 5V supply, TTL compatibility is not guaranteed when protection diodes are added. Driving IN1 and IN2 all the way to the supply rails (i.e., to a diodedrop higher than the V+ pin, or to a diode-drop lower than the GND pin) is always acceptable.

Protection diodes D1 and D2 also protect against some overvoltage situations. With Figure 1's circuit, if the supply voltage is below the absolute maximum rating, and if a fault voltage up to the absolute maximum rating is applied to an analog signal pin, no damage will result. For example, with a +5V supply, analog signals up to ±8V will not damage the circuit of Figure 1. If only a single fault signal is present, the fault voltage can rise to +17V or to -12V without damage occurring.

Test Circuits/Timing Diagrams

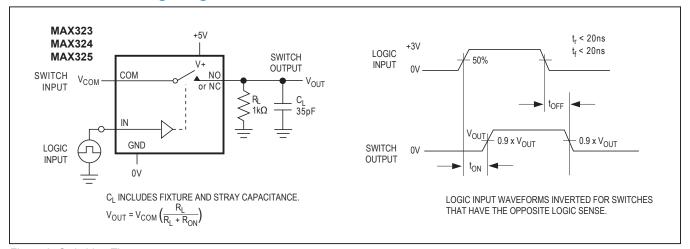


Figure 2. Switching Time

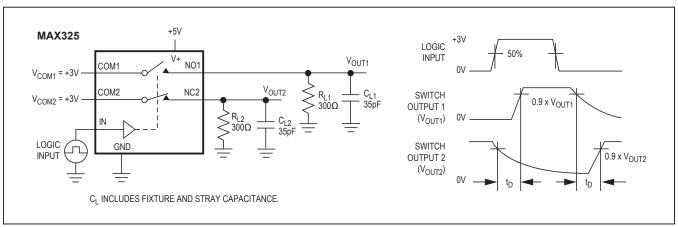


Figure 3. Break-Before-Make Interval (MAX325 only)

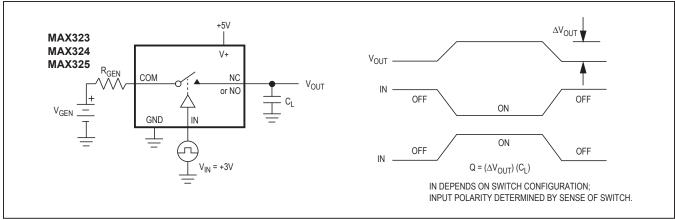


Figure 4. Charge Injection

Test Circuits/Timing Diagrams (continued)

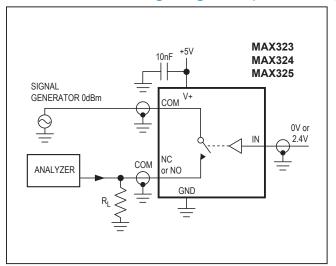


Figure 5. Off Isolation

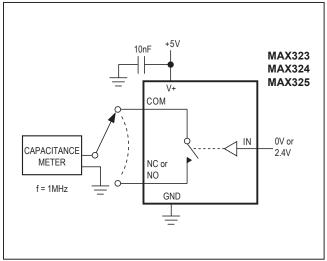


Figure 7. Channel-Off Capacitance

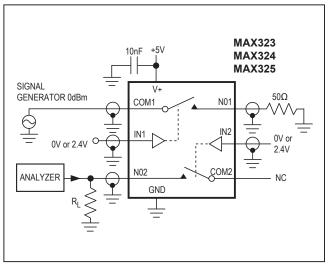
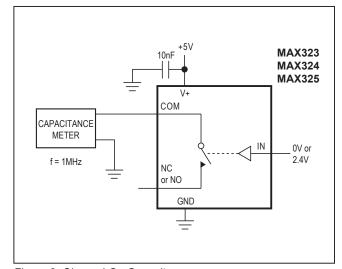
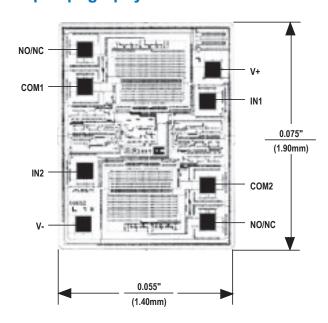


Figure 6. Crosstalk



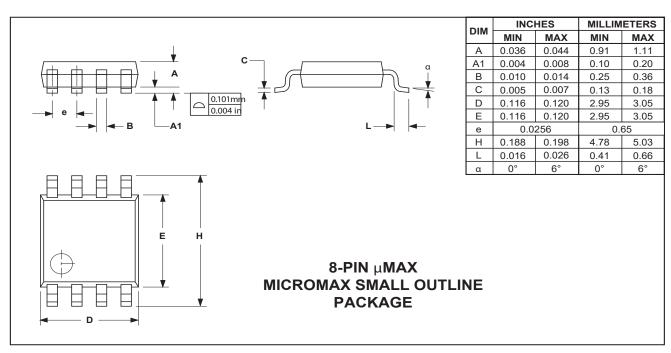

Figure 8. Channel-On Capacitance

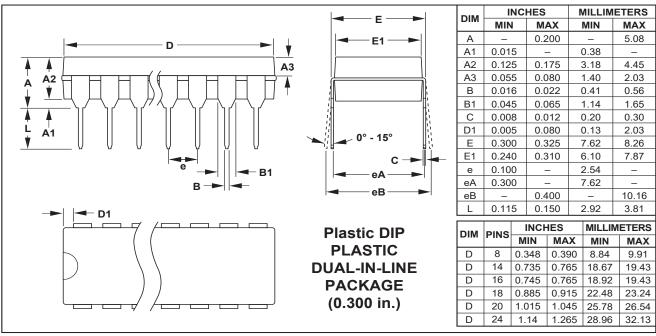
Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX324CPA	0°C to +70°C	8 Plastic DIP
MAX324CUA	0°C to +70°C	8 µMAX
MAX324CSA	0°C to +70°C	8 SO
MAX324C/D	0°C to +70°C	Dice*
MAX324EPA	-40°C to +85°C	8 Plastic DIP
MAX324ESA	-40°C to +85°C	8 SO
MAX324EJA	-40°C to +85°C	8 CERDIP**
MAX324MJA	-55°C to +125°C	8 CERDIP**
MAX325CPA	0°C to +70°C	8 Plastic DIP
MAX325CUA	0°C to +70°C	8 µMAX
MAX325CSA	0°C to +70°C	8 SO
MAX325C/D	0°C to +70°C	Dice*
MAX325EPA	-40°C to +85°C	8 Plastic DIP
MAX325ESA	-40°C to +85°C	8 SO
MAX325EJA	-40°C to +85°C	8 CERDIP**
MAX325MJA	-55°C to +125°C	8 CERDIP**

^{*} Contact factory for dice specifications.

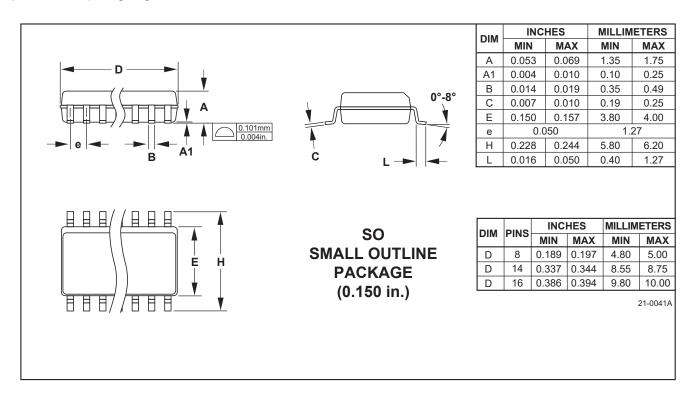
Chip Topography

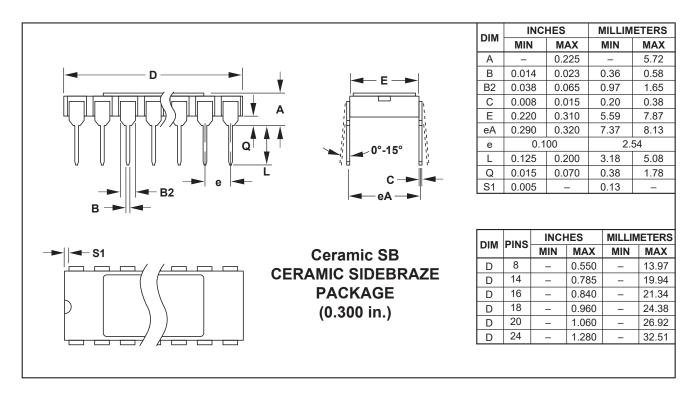



TRANSISTOR COUNT: 91 SUBSTRATE IS CONNECTED TO V+

^{**} Contact factory for availability.

Package Information


For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.


Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	
2	12/20	Updated Pin Configurations in Pin Configurations/Functional Diagrams/Truth Tables, added Revision History.	1, 13

