

3.0 kV rms, Dual-Channel Digital Isolators

FEATURES

- ▶ High common-mode transient immunity: 100 kV/μs typical
- ▶ High robustness to radiated and conducted noise
- ▶ Low propagation delay
 - ▶ 13 ns maximum for 5 V operation
 - ▶ 15 ns maximum for 1.8 V operation
- ▶ 150 Mbps minimum data rate
- ▶ **Safety and regulatory approvals**
 - ▶ UL 1577
 - ▶ $V_{ISO} = 3000$ V rms for 1 minute
 - ▶ IEC/CSA 62368-1
 - ▶ IEC/CSA 60601-1
 - ▶ IEC/CSA 61010-1
 - ▶ CQC GB4943.1
 - ▶ DIN EN IEC 60747-17 (VDE 0884-17)
 - ▶ $V_{IORM} = 565$ V peak
- ▶ Backward compatibility
 - ▶ ADuM120N0 pin-compatible with [ADuM1285](#)
 - ▶ ADuM120N1 pin-compatible with [ADuM1280](#) and [ADuM1200](#)
 - ▶ ADuM121N0 pin-compatible with [ADuM1286](#)
 - ▶ ADuM121N1 pin-compatible with [ADuM1281](#) and [ADuM1201](#)
- ▶ Low dynamic power consumption
- ▶ 1.8 V to 5 V level translation
- ▶ High temperature operation: 125°C
- ▶ Fail-safe high or low options
- ▶ **8-lead, RoHS-compliant, SOIC package**
- ▶ AEC-Q100 qualified for automotive applications

APPLICATIONS

- ▶ General-purpose multichannel isolation
- ▶ Industrial field bus isolation

FUNCTIONAL BLOCK DIAGRAMS

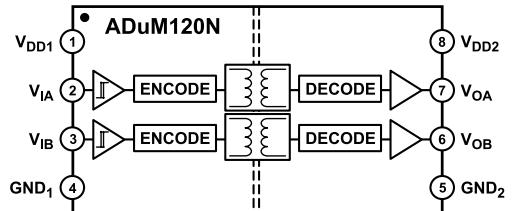


Figure 1. ADuM120N Functional Block Diagram

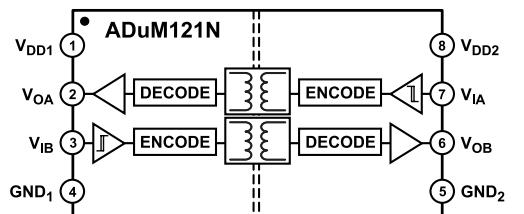


Figure 2. ADuM121N Functional Block Diagram

GENERAL DESCRIPTION

The ADuM120N/ADuM121N¹ are dual-channel digital isolators based on Analog Devices, Inc., *iCoupler*® technology. Combining high speed, complementary metal-oxide semiconductor (CMOS) and monolithic air core transformer technology, these isolation components provide outstanding performance characteristics superior to alternatives such as optocoupler devices and other integrated couplers. The maximum propagation delay is 13 ns with a pulse width distortion of less than 3 ns at 5 V operation. Channel matching is tight at 3.0 ns maximum.

The ADuM120N/ADuM121N data channels are independent and are available in a variety of configurations with a withstand voltage rating of 3 kV rms (see the [Ordering Guide](#)). The devices operate with the supply voltage on either side ranging from 1.8 V to 5 V, providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier.

Unlike other optocoupler alternatives, dc correctness is ensured in the absence of input logic transitions. Two different fail-safe options are available in which the outputs transition to a predetermined state when the input power supply is not applied or the inputs are disabled.

The ADuM120N0 is pin-compatible with the ADuM1285, and the ADuM120N1 is pin-compatible with the ADuM1280 and the ADuM1200. The ADuM121N0 is pin-compatible with ADuM1286, and the ADuM121N1 is pin-compatible with the ADuM1281 and the ADuM1201.

¹ Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329. Other patents are pending.

TABLE OF CONTENTS

Features.....	1	ESD Caution.....	12
Applications.....	1	Truth Tables.....	12
Functional Block Diagrams.....	1	Pin Configurations and Function Descriptions.....	13
General Description.....	1	Typical Performance Characteristics.....	14
Specifications.....	3	Applications Information.....	15
Electrical Characteristics—5 V Operation.....	3	Overview.....	15
Electrical Characteristics—3.3 V Operation.....	4	PCB Layout.....	15
Electrical Characteristics—2.5 V Operation.....	6	Propagation Delay Related Parameters.....	16
Electrical Characteristics—1.8 V Operation.....	7	Jitter Measurement.....	16
Insulation and Safety Related Specifications.....	9	Outline Dimensions.....	17
Package Characteristics.....	9	Ordering Guide.....	17
Regulatory Information.....	9	No. of Inputs, Withstand Voltage Rating, and Fail-Safe Output State Options.....	17
DIN EN IEC 60747-17 (VDE 0884-17)		Evaluation Boards.....	18
Insulation Characteristics.....	10	Automotive Products.....	18
Recommended Operating Conditions.....	11		
Absolute Maximum Ratings.....	12		

REVISION HISTORY**11/2024—Rev. E to Rev. F**

Changes to Features Section.....	1
Changes to Table 9.....	9
Changes to Regulatory Information Section and Table 11.....	9
Changed DIN VDE V 0884-11:2017-01 Insulation Characteristics Section to DIN EN IEC 60747-17 (VDE 0884-17) Insulation Characteristics Section.....	10
Changes to DIN EN IEC 60747-17 (VDE 0884-17) Insulation Characteristics Section, Table 12, and Figure 3 Caption.....	10
Deleted Table 15; Renumbered Sequentially.....	12
Deleted Insulation Lifetime Section, Surface Tracking Section, Insulation Wear Out Section, Calculation and Use of Parameters Example, and Figure 17.....	16
Added No. of Inputs, Withstand Voltage Rating, and Fail-Safe Output State Options.....	17
Added Evaluation Boards.....	18

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION

All typical specifications are at $T_A = 25^\circ\text{C}$, $V_{DD1} = V_{DD2} = 5\text{ V}$. Minimum/maximum specifications apply over the entire recommended operation range of $4.5\text{ V} \leq V_{DD1} \leq 5.5\text{ V}$, $4.5\text{ V} \leq V_{DD2} \leq 5.5\text{ V}$, and $-40^\circ\text{C} \leq T_A \leq +125^\circ\text{C}$, unless otherwise noted. Switching specifications are tested with $C_L = 15\text{ pF}$ and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
SWITCHING SPECIFICATIONS						
Pulse Width	PW	6.6			ns	Within pulse width distortion (PWD) limit
Data Rate		150			Mbps	Within PWD limit
Propagation Delay	t_{PHL}, t_{PLH}	4.8	7.2	13	ns	50% input to 50% output
Pulse Width Distortion	PWD		0.5	3	ns	$ t_{PLH} - t_{PHL} $
Change vs. Temperature			1.5		ps/ $^\circ\text{C}$	
Propagation Delay Skew	t_{PSK}			6.0	ns	Between any two units at the same temperature, voltage, and load
Channel Matching						
Codirectional	t_{PSKCD}		0.5	3.0	ns	
Opposing Direction	t_{PSKOD}		0.5	3.0	ns	
Jitter			380		ps p-p	See the Jitter Measurement section
			55		ps rms	See the Jitter Measurement section
DC SPECIFICATIONS						
Input Threshold Voltage						
Logic High	V_{IH}	$0.7 \times V_{DDx}$			V	
Logic Low	V_{IL}	$0.3 \times V_{DDx}$			V	
Output Voltage						
Logic High	V_{OH}	$V_{DDx} - 0.1$	V_{DDx}		V	$I_{ox}^1 = -20\text{ }\mu\text{A}$, $V_{Ix} = V_{IxH}^2$
		$V_{DDx} - 0.4$	$V_{DDx} - 0.2$		V	$I_{ox}^1 = -4\text{ mA}$, $V_{Ix} = V_{IxH}^2$
Logic Low	V_{OL}	0.0	0.1		V	$I_{ox}^1 = 20\text{ }\mu\text{A}$, $V_{Ix} = V_{IxL}^3$
		0.2	0.4		V	$I_{ox}^1 = 4\text{ mA}$, $V_{Ix} = V_{IxL}^3$
Input Current per Channel	I_I	-10	+0.01	+10	μA	$0\text{ V} \leq V_{Ix} \leq V_{DDx}$
Quiescent Supply Current						
ADuM120N	$I_{DD1(Q)}$	0.9	1.3		mA	$V_I^4 = 0\text{ (N0), 1 (N1)}^5$
	$I_{DD2(Q)}$	1.3	1.8		mA	$V_I^4 = 0\text{ (N0), 1 (N1)}^5$
	$I_{DD1(Q)}$	6.4	10.0		mA	$V_I^4 = 1\text{ (N0), 0 (N1)}^5$
	$I_{DD2(Q)}$	1.4	1.9		mA	$V_I^4 = 1\text{ (N0), 0 (N1)}^5$
ADuM121N	$I_{DD1(Q)}$	1.1	1.6		mA	$V_I^4 = 0\text{ (N0), 1 (N1)}^5$
	$I_{DD2(Q)}$	1.1	1.5		mA	$V_I^4 = 0\text{ (N0), 1 (N1)}^5$
	$I_{DD1(Q)}$	4.0	5.8		mA	$V_I^4 = 1\text{ (N0), 0 (N1)}^5$
	$I_{DD2(Q)}$	4.9	6.4		mA	$V_I^4 = 1\text{ (N0), 0 (N1)}^5$
Dynamic Supply Current						
Dynamic Input	$I_{DDI(D)}$	0.01			mA/Mbps	Inputs switching, 50% duty cycle
Dynamic Output	$I_{DDO(D)}$	0.02			mA/Mbps	Inputs switching, 50% duty cycle
Undervoltage Lockout	UVLO					
Positive V_{DDx} Threshold	V_{DDxUV+}	1.6			V	
Negative V_{DDx} Threshold	V_{DDxUV-}	1.5			V	
V_{DDx} Hysteresis	V_{DDxUVH}	0.1			V	
AC SPECIFICATIONS						
Output Rise/Fall Time	t_R/t_F	2.5			ns	10% to 90%
Common-Mode Transient Immunity ⁶	$ CM_H $	75	100		kV/ μs	$V_{Ix} = V_{DDx}$, $V_{CM} = 1000\text{ V}$, transient magnitude = 800 V

SPECIFICATIONS

Table 1. (Continued)

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
	$ CM_L $	75	100		kV/μs	$V_{lx} = 0 \text{ V}$, $V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V

¹ I_{Ox} is the Channel x output current, where x = A or B.

² V_{lxH} is the input side logic high voltage.

³ V_{lxL} is the input side logic low voltage.

⁴ V_i is the input voltage.

⁵ N0 is the ADuM120N0/ADuM121N0 models, and N1 is the ADuM120N1/ADuM121N1 models. See the [Ordering Guide](#).

⁶ $|CM_H|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (V_O) $> 0.8 V_{DDx}$. $|CM_L|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_O > 0.8 \text{ V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

Table 2. Total Supply Current vs. Data Throughput

Parameter	Symbol	1 Mbps			25 Mbps			100 Mbps			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
SUPPLY CURRENT											
ADuM120N											
Supply Current Side 1	I_{DD1}		3.7	6.8		4.2	7.2		6.2	9.3	mA
Supply Current Side 2	I_{DD2}		1.4	2.0		2.5	3.2		6.0	8.1	mA
ADuM121N											
Supply Current Side 1	I_{DD1}		2.6	4.5		3.2	5.4		5.4	8.2	mA
Supply Current Side 2	I_{DD2}		3.0	4.9		3.7	5.9		5.8	8.6	mA

ELECTRICAL CHARACTERISTICS—3.3 V OPERATION

All typical specifications are at $T_A = 25^\circ\text{C}$, $V_{DD1} = V_{DD2} = 3.3 \text{ V}$. Minimum/maximum specifications apply over the entire recommended operation range: $3.0 \text{ V} \leq V_{DD1} \leq 3.6 \text{ V}$, $3.0 \text{ V} \leq V_{DD2} \leq 3.6 \text{ V}$, and $-40^\circ\text{C} \leq T_A \leq +125^\circ\text{C}$, unless otherwise noted. Switching specifications are tested with $C_L = 15 \text{ pF}$ and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.

Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
SWITCHING SPECIFICATIONS						
Pulse Width	PW	6.6			ns	Within PWD limit
Data Rate		150			Mbps	Within PWD limit
Propagation Delay	t_{PHL}, t_{PLH}	4.8	6.8	14	ns	50% input to 50% output
Pulse Width Distortion	PWD		0.7	3	ns	$ t_{PLH} - t_{PHL} $
Change vs. Temperature			1.5		ps/°C	
Propagation Delay Skew	t_{PSK}			7.0	ns	Between any two units at the same temperature, voltage, and load
Channel Matching						
Codirectional	t_{PSKCD}		0.7	3.0	ns	
Opposing Direction	t_{PSKOD}		0.7	3.0	ns	
Jitter			290		ps p-p	See the Jitter Measurement section
			45		ps rms	See the Jitter Measurement section
DC SPECIFICATIONS						
Input Threshold Voltage						
Logic High	V_{IH}	$0.7 \times V_{DDx}$			V	
Logic Low	V_{IL}			$0.3 \times V_{DDx}$	V	
Output Voltage						
Logic High	V_{OH}	$V_{DDx} - 0.1$	V_{DDx}		V	$I_{Ox}^1 = -20 \mu\text{A}$, $V_{lx} = V_{lxH}^2$
		$V_{DDx} - 0.4$	$V_{DDx} - 0.2$		V	$I_{Ox}^1 = -2 \text{ mA}$, $V_{lx} = V_{lxH}^2$

SPECIFICATIONS

Table 3. (Continued)

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
Logic Low	V_{OL}		0.0	0.1	V	$I_{Ox}^1 = 20 \mu A, V_{Ix} = V_{IxL}^3$
			0.2	0.4	V	$I_{Ox}^1 = 2 \text{ mA}, V_{Ix} = V_{IxL}^3$
Input Current per Channel	I_I	-10	+0.01	+10	μA	$0 \text{ V} \leq V_{Ix} \leq V_{DDx}$
Quiescent Supply Current						
ADuM120N	$I_{DD1(Q)}$		0.8	1.3	mA	$V_I^4 = 0 \text{ (NO), 1 (N1)}^5$
	$I_{DD2(Q)}$		1.2	1.8	mA	$V_I^4 = 0 \text{ (NO), 1 (N1)}^5$
	$I_{DD1(Q)}$		6.3	9.7	mA	$V_I^4 = 1 \text{ (NO), 0 (N1)}^5$
	$I_{DD2(Q)}$		1.3	1.8	mA	$V_I^4 = 1 \text{ (NO), 0 (N1)}^5$
ADuM121N	$I_{DD1(Q)}$		1.0	1.6	mA	$V_I^4 = 0 \text{ (NO), 1 (N1)}^5$
	$I_{DD2(Q)}$		1.0	1.5	mA	$V_I^4 = 01 \text{ (NO), 1 (N1)}^5$
	$I_{DD1(Q)}$		3.9	5.8	mA	$V_I^4 = 1 \text{ (NO), 0 (N1)}^5$
	$I_{DD2(Q)}$		4.8	6.4	mA	$V_I^4 = 1 \text{ (NO), 0 (N1)}^5$
Dynamic Supply Current						
Dynamic Input	$I_{DDI(D)}$		0.01		mA/Mbps	Inputs switching, 50% duty cycle
Dynamic Output	$I_{DDO(D)}$		0.01		mA/Mbps	Inputs switching, 50% duty cycle
Undervoltage Lockout	UVLO					
Positive V_{DDx} Threshold	V_{DDxUV+}		1.6		V	
Negative V_{DDx} Threshold	V_{DDxUV-}		1.5		V	
V_{DDx} Hysteresis	V_{DDxUVH}		0.1		V	
AC SPECIFICATIONS						
Output Rise/Fall Time	t_R/t_F		2.5		ns	10% to 90%
Common-Mode Transient Immunity ⁶	$ CM_H $	75	100		kV/μs	$V_{Ix} = V_{DDx}, V_{CM} = 1000 \text{ V}, \text{transient magnitude} = 800 \text{ V}$
	$ CM_L $	75	100		kV/μs	$V_{Ix} = 0 \text{ V}, V_{CM} = 1000 \text{ V}, \text{transient magnitude} = 800 \text{ V}$

¹ I_{Ox} is the Channel x output current, where x = A or B.

² V_{IxH} is the input side logic high voltage.

³ V_{IxL} is the input side logic low voltage.

⁴ V_I is the input voltage.

⁵ N0 is the ADuM120N0/ADuM121N0 models, and N1 is the ADuM120N1/ADuM121N1 models. See the [Ordering Guide](#).

⁶ $|CM_H|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_O > 0.8 V_{DDx}$. $|CM_L|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_O > 0.8 \text{ V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

Table 4. Total Supply Current vs. Data Throughput

Parameter	Symbol	1 Mbps			25 Mbps			100 Mbps			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
SUPPLY CURRENT											
ADuM120N											
Supply Current Side 1	I_{DD1}		3.6	6.2		4.0	6.7		5.6	9.1	mA
Supply Current Side 2	I_{DD2}		1.3	1.9		2.3	3.1		5.2	6.8	mA
ADuM121N											
Supply Current Side 1	I_{DD1}		2.5	4.6		3.0	5.5		5.0	8.1	mA
Supply Current Side 2	I_{DD2}		2.9	4.8		3.5	5.8		5.4	8.3	mA

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—2.5 V OPERATION

All typical specifications are at $T_A = 25^\circ\text{C}$, $V_{DD1} = V_{DD2} = 2.5\text{ V}$. Minimum/maximum specifications apply over the entire recommended operation range: $2.25\text{ V} \leq V_{DD1} \leq 2.75\text{ V}$, $2.25\text{ V} \leq V_{DD2} \leq 2.75\text{ V}$, $-40^\circ\text{C} \leq T_A \leq +125^\circ\text{C}$, unless otherwise noted. Switching specifications are tested with $C_L = 15\text{ pF}$ and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.

Table 5.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
SWITCHING SPECIFICATIONS						
Pulse Width	PW	6.6			ns	Within PWD limit
Data Rate		150			Mbps	Within PWD limit
Propagation Delay	t_{PHL}, t_{PLH}	5.0	7.0	14	ns	50% input to 50% output
Pulse Width Distortion	PWD		0.7	3	ns	$ t_{PLH} - t_{PHL} $
Change vs. Temperature			1.5		ps/ $^\circ\text{C}$	
Propagation Delay Skew	t_{PSK}			7.0	ns	Between any two units at the same temperature, voltage, load
Channel Matching						
Codirectional	t_{PSKCD}		0.7	3.0	ns	
Opposing Direction	t_{PSKOD}		0.7	3.0	ns	
Jitter			320		ps p-p	See the Jitter Measurement section
			65		ps rms	See the Jitter Measurement section
DC SPECIFICATIONS						
Input Threshold Voltage						
Logic High	V_{IH}	$0.7 \times V_{DDx}$			V	
Logic Low	V_{IL}	$0.3 \times V_{DDx}$			V	
Output Voltage						
Logic High	V_{OH}	$V_{DDx} - 0.1$	V_{DDx}		V	$I_{Ox}^1 = -20\text{ }\mu\text{A}, V_{Ix} = V_{IxH}^2$
		$V_{DDx} - 0.4$	$V_{DDx} - 0.2$		V	$I_{Ox}^1 = -2\text{ mA}, V_{Ix} = V_{IxH}^2$
Logic Low	V_{OL}	0.0	0.1		V	$I_{Ox}^1 = 20\text{ }\mu\text{A}, V_{Ix} = V_{IxL}^3$
		0.2	0.4		V	$I_{Ox}^1 = 2\text{ mA}, V_{Ix} = V_{IxL}^3$
Input Current per Channel	I_I	-10	+0.01	+10	μA	$0\text{ V} \leq V_{Ix} \leq V_{DDx}$
Quiescent Supply Current						
ADuM120N	$I_{DD1(Q)}$		0.8	1.2	mA	$V_I^4 = 0\text{ (N0), 1 (N1)}^5$
	$I_{DD2(Q)}$		1.2	1.8	mA	$V_I^4 = 0\text{ (N0), 1 (N1)}^5$
	$I_{DD1(Q)}$		6.2	9.5	mA	$V_I^4 = 1\text{ (N0), 0 (N1)}^5$
	$I_{DD2(Q)}$		1.3	1.8	mA	$V_I^4 = 1\text{ (N0), 0 (N1)}^5$
ADuM121N	$I_{DD1(Q)}$		1.0	1.5	mA	$V_I^4 = 0\text{ (N0), 1 (N1)}^5$
	$I_{DD2(Q)}$		1.0	1.4	mA	$V_I^4 = 0\text{ (N0), 1 (N1)}^5$
	$I_{DD1(Q)}$		3.9	5.8	mA	$V_I^4 = 1\text{ (N0), 0 (N1)}^5$
	$I_{DD2(Q)}$		4.8	6.4	mA	$V_I^4 = 1\text{ (N0), 0 (N1)}^5$
Dynamic Supply Current						
Dynamic Input	$I_{DDI(D)}$		0.01		mA/Mbps	Inputs switching, 50% duty cycle
Dynamic Output	$I_{DDO(D)}$		0.01		mA/Mbps	Inputs switching, 50% duty cycle
Undervoltage Lockout						
Positive V_{DDx} Threshold	V_{DDxUV+}		1.6		V	
Negative V_{DDx} Threshold	V_{DDxUV-}		1.5		V	
V_{DDx} Hysteresis	V_{DDxUVH}		0.1		V	
AC SPECIFICATIONS						
Output Rise/Fall Time	t_R/t_F		2.5		ns	10% to 90%
Common-Mode Transient Immunity ⁶	$ CM_H $	75	100		kV/ μs	$V_{Ix} = V_{DDx}, V_{CM} = 1000\text{ V}$, transient magnitude = 800 V

SPECIFICATIONS

Table 5. (Continued)

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
	$ CM_L $	75	100		$V/V\mu s$	$V_{lx} = 0 V, V_{CM} = 1000 V, \text{ transient magnitude} = 800 V$

¹ I_{Ox} is the Channel x output current, where x = A or B.

² V_{lxH} is the input side logic high voltage.

³ V_{lxL} is the input side logic low voltage.

⁴ V_I is the input voltage.

⁵ N0 is the ADuM120N0/ADuM121N0 models, and N1 is the ADuM120N1/ADuM121N1 models. See the [Ordering Guide](#).

⁶ $|CM_H|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_O > 0.8 V_{DDx}$. $|CM_L|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_O > 0.8 V$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

Table 6. Total Supply Current vs. Data Throughput

Parameter	Symbol	1 Mbps			25 Mbps			100 Mbps			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
SUPPLY CURRENT											
ADuM120N											
Supply Current Side 1	I_{DD1}		3.5	6.2		3.9	6.6		5.4	9.0	mA
Supply Current Side 2	I_{DD2}		1.3	1.9		2.0	2.8		4.2	5.8	mA
ADuM121N											
Supply Current Side 1	I_{DD1}		2.4	4.7		2.9	5.5		4.5	8.0	mA
Supply Current Side 2	I_{DD2}		2.9	4.9		3.3	5.7		4.9	7.7	mA

ELECTRICAL CHARACTERISTICS—1.8 V OPERATION

All typical specifications are at $T_A = 25^\circ C$, $V_{DD1} = V_{DD2} = 1.8 V$. Minimum/maximum specifications apply over the entire recommended operation range: $1.7 V \leq V_{DD1} \leq 1.9 V$, $1.7 V \leq V_{DD2} \leq 1.9 V$, and $-40^\circ C \leq T_A \leq +125^\circ C$, unless otherwise noted. Switching specifications are tested with $C_L = 15 pF$ and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.

Table 7.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
SWITCHING SPECIFICATIONS						
Pulse Width	PW	6.6			ns	Within PWD limit
Data Rate		150			Mbps	Within PWD limit
Propagation Delay	t_{PHL}, t_{PLH}	5.8	8.7	15	ns	50% input to 50% output
Pulse Width Distortion	PWD		0.7	3	ns	$ t_{PLH} - t_{PHL} $
Change vs. Temperature			1.5		ps/°C	
Propagation Delay Skew	t_{PSK}			7.0	ns	Between any two units at the same temperature, voltage, and load
Channel Matching						
Codirectional	t_{PSKCD}		0.7	3.0	ns	
Opposing Direction	t_{PSKOD}		0.7	3.0	ns	
Jitter			630		ps p-p	See the Jitter Measurement section
			190		ps rms	See the Jitter Measurement section
DC SPECIFICATIONS						
Input Threshold Voltage						
Logic High	V_{IH}	$0.7 \times V_{DDx}$			V	
Logic Low	V_{IL}	$0.3 \times V_{DDx}$			V	
Output Voltage						
Logic High	V_{OH}	$V_{DDx} - 0.1$	V_{DDx}		V	$I_{Ox}^1 = -20 \mu A, V_{lx} = V_{lxH}^2$

SPECIFICATIONS

Table 7. (Continued)

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
Logic Low	V _{OL}	V _{DDX} - 0.4	V _{DDX} - 0.2		V	I _{OX} ¹ = -2 mA, V _{IX} = V _{IXH} ²
		0.0	0.1		V	I _{OX} ¹ = 20 μ A, V _{IX} = V _{IXL} ³
		0.2	0.4		V	I _{OX} ¹ = 2 mA, V _{IX} = V _{IXL} ³
Input Current per Channel	I _I	-10	+0.01	+10	μ A	0 V \leq V _{IX} \leq V _{DDX}
Quiescent Supply Current ADuM120N	I _{DD1 (Q)}		0.7	1.2	mA	V _I ⁴ = 0 (N0), 1 (N1) ⁵
	I _{DD2 (Q)}		1.2	1.8	mA	V _I ⁴ = 0 (N0), 1 (N1) ⁵
	I _{DD1 (Q)}		6.2	9.6	mA	V _I ⁴ = 1 (N0), 0 (N1) ⁵
	I _{DD2 (Q)}		1.3	1.8	mA	V _I ⁴ = 1 (N0), 0 (N1) ⁵
	I _{DD1 (Q)}		1.0	1.5	mA	V _I ⁴ = 0 (N0), 1 (N1) ⁵
	I _{DD2 (Q)}		1.0	1.4	mA	V _I ⁴ = 0 (N0), 1 (N1) ⁵
	I _{DD1 (Q)}		3.8	5.8	mA	V _I ⁴ = 1 (N0), 0 (N1) ⁵
	I _{DD2 (Q)}		4.7	6.4	mA	V _I ⁴ = 1 (N0), 0 (N1) ⁵
Dynamic Supply Current						
Dynamic Input	I _{DD1 (D)}		0.01		mA/Mbps	Inputs switching, 50% duty cycle
Dynamic Output	I _{DD0 (D)}		0.01		mA/Mbps	Inputs switching, 50% duty cycle
Undervoltage Lockout	UVLO					
Positive V _{DDX} Threshold	V _{DDXUV+}		1.6		V	
Negative V _{DDX} Threshold	V _{DDXUV-}		1.5		V	
V _{DDX} Hysteresis	V _{DDXUVH}		0.1		V	
AC SPECIFICATIONS						
Output Rise/Fall Time	t _{R/F}		2.5		ns	10% to 90%
Common-Mode Transient Immunity ⁶	CM _H	75	100		kV/ μ s	V _{IX} = V _{DDX} , V _{CM} = 1000 V, transient magnitude = 800 V
	CM _L	75	100		kV/ μ s	V _{IX} = 0 V, V _{CM} = 1000 V, transient magnitude = 800 V

¹ I_{OX} is the Channel x output current, where x = A or B.² V_{IXH} is the input side logic high voltage.³ V_{IXL} is the input side logic low voltage.⁴ V_I is the input voltage.⁵ N0 is the ADuM120N0/ADuM121N0 models, N1 is the ADuM120N1/ADuM121N1 models. See the [Ordering Guide](#).⁶ |CM_H| is the maximum common-mode voltage slew rate that can be sustained while maintaining V_O > 0.8 V_{DDX}. |CM_L| is the maximum common-mode voltage slew rate that can be sustained while maintaining V_O > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

Table 8. Total Supply Current vs. Data Throughput

Parameter	Symbol	1 Mbps			25 Mbps			100 Mbps			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
SUPPLY CURRENT											
ADuM120N											
Supply Current Side 1	I _{DD1}		3.4	6.0		3.8	6.4		5.2	8.4	mA
Supply Current Side 2	I _{DD2}		1.2	1.8		1.9	2.8		4.0	5.8	mA
ADuM121N											
Supply Current Side 1	I _{DD1}		2.4	4.7		2.8	5.5		4.4	7.8	mA
Supply Current Side 2	I _{DD2}		2.8	4.8		3.2	5.6		4.8	7.9	mA

SPECIFICATIONS**INSULATION AND SAFETY RELATED SPECIFICATIONS**For additional information, see www.analog.com/icouplersafety.**Table 9.**

Parameter	Symbol	Value	Unit	Test Conditions/Comments
Rated Dielectric Insulation Voltage		3000	V rms	1-minute duration
Minimum External Air Gap (Clearance)	L (I01)	4.0 ^{1,2}	mm min	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L (I02)	4.0	mm min	Measured from input terminals to output terminals, shortest distance path along body
Minimum Clearance in the Plane of the Printed Circuit Board (PCB Clearance)	L (PCB)	4.5	mm min	Measured from input terminals to output terminals, shortest distance through air, line of sight, in the PCB mounting plane
Minimum Internal Gap (Internal Clearance)		29	μm min	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index)	CTI	>400 ³	V	DIN IEC 112/VDE 0303 Part 1
Material Group		II		Material Group per IEC 60664-1

¹ In accordance with IEC 62368-1/IEC 60601-1 guidelines for the measurement of creepage and clearance distances for a pollution degree of 2 and altitudes \leq 2000 meters.² Consideration must be given to pad layout to ensure the minimum required distance for clearance is maintained.³ CTI rating for the ADuM120N/ADuM121N is >400 V and Material Group II isolation group.**PACKAGE CHARACTERISTICS****Table 10.**

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
Resistance (Input to Output) ¹	R _{I-O}		10 ¹³		Ω	
Capacitance (Input to Output) ¹	C _{I-O}		2		pF	f = 1 MHz
Input Capacitance ²	C _I		4.0		pF	
IC Junction to Ambient Thermal Resistance	θ _{JA}		80		°C/W	Thermocouple located at center of package underside

¹ The device is considered a 2-terminal device: Pin 1 through Pin 4 are shorted together, and Pin 5 through Pin 8 are shorted together.² Input capacitance is from any input data pin to ground.**REGULATORY INFORMATION**The ADuM120N/ADuM121N certification approvals are listed in [Table 11](#).**Table 11.**

Regulatory Body	Insulation Parameter	Insulation Specifications	Recognition/Approval Program	File
UL	Single protection	3000 V rms	UL 1577 ¹	File E214100
CSA				File No. 205078
IEC/CSA 62368-1	Basic insulation	400 V rms		
IEC/CSA 60601-1	Reinforced insulation	200 V rms		
IEC/CSA 61010-1	Basic insulation (1 MOPP)	250 V rms		
	Reinforced insulation	300 V rms, overvoltage category III		
VDE	Reinforced insulation	150 V rms	DIN EN IEC 60747-17 (VDE 0884-17) ²	Certificate No. 40051926
CQC				Certificate No.
GB4943.1	Basic insulation	400 V rms		CQC18001192422

SPECIFICATIONS

- 1 In accordance with UL 1577, each ADuM120N/ADuM121N is proof tested by applying an insulation test voltage ≥ 3600 V rms for 1 sec.
- 2 In accordance with DIN EN IEC 60747-17 (VDE 0884-17), each ADuM120N/ADuM121N is proof tested by applying an insulation test voltage ≥ 1059 V peak for 1 sec (partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN EN IEC 60747-17 (VDE 0884-17) approval.

DIN EN IEC 60747-17 (VDE 0884-17) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance of the safety data. The * marking on packages denotes DIN EN IEC 60747-17 (VDE 0884-17) approval.

Table 12.

Description	Test Conditions/Comments	Symbol	Characteristic	Unit
Overvoltage Category per IEC 60664-1				
For Rated Mains Voltage ≤ 150 V rms			I to IV	
For Rated Mains Voltage ≤ 300 V rms			I to III	
For Rated Mains Voltage ≤ 400 V rms			I to III	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Repetitive Isolation Voltage		V_{IORM}	565	V peak
Maximum Working Insulation Voltage		V_{IOWM}	400	V rms
Input to Output Test Voltage, Method B1	$V_{IORM} \times 1.875 = V_{pd(m)}$, 100% production test, $t_{ini} = t_m = 1$ sec, partial discharge < 5 pC	$V_{pd(m)}$	1059	V peak
Input to Output Test Voltage, Method A				
After Environmental Tests Subgroup 1	$V_{IORM} \times 1.6 = V_{pd(m)}$, $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC	$V_{pd(m)}$	904	V peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$V_{IORM} \times 1.2 = V_{pd(m)}$, $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC	$V_{pd(m)}$	678	V peak
Maximum Transient Isolation Voltage		V_{IOTM}	4200	V peak
Maximum Impulse Voltage	Tested in air, 1.2 μ s/50 μ s waveform per IEC 61000-4-5	V_{IMP}	4200	V peak
Maximum Surge Isolation Voltage	Tested in oil, 1.2 μ s/50 μ s waveform per IEC 61000-4-5, $V_{TEST} = V_{IMP} \times 1.3$ or ≥ 10 kV	V_{IOSM}	10,000	V peak
Safety Limiting Values	Maximum value allowed in the event of a failure (see Figure 3)			
Maximum Junction Temperature		T_S	150	°C
Total Power Dissipation at 25°C		P_S	1.56	W
Insulation Resistance at T_S	$V_{IO} = 500$ V	R_S	$>10^9$	Ω

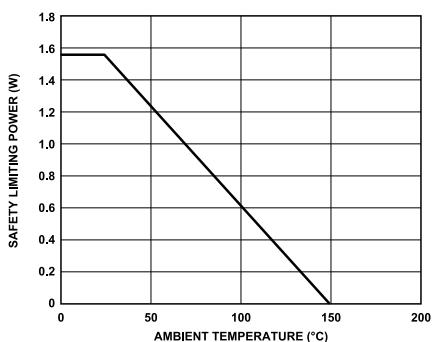


Figure 3. Thermal Derating Curve, Dependence of Safety Limiting Values with Ambient Temperature per DIN EN IEC 60747-17 (VDE 0884-17)

SPECIFICATIONS**RECOMMENDED OPERATING CONDITIONS***Table 13.*

Parameter	Symbol	Rating
Operating Temperature	T_A	-40°C to +125°C
Supply Voltages	V_{DD1}, V_{DD2}	1.7 V to 5.5 V
Input Signal Rise and Fall Times		1.0 ms

ABSOLUTE MAXIMUM RATINGS

$T_A = 25^\circ\text{C}$, unless otherwise noted.

Table 14.

Parameter	Rating
Supply Voltages (V_{DD1}, V_{DD2})	-0.5 V to +7.0 V
Input Voltages (V_{IA}, V_{IB}) ¹	-0.5 V to $V_{DD1} + 0.5$ V
Output Voltages (V_{OA}, V_{OB}) ²	-0.5 V to $V_{DDO} + 0.5$ V
Average Output Current per Pin ³	
Side 1 Output Current (I_{O1})	-10 mA to +10 mA
Side 2 Output Current (I_{O2})	-10 mA to +10 mA
Common-Mode Transients ⁴	-150 kV/μs to +150 kV/μs
Storage Temperature (T_{ST}) Range	-65°C to +150°C
Ambient Operating Temperature (T_A) Range	-40°C to +125°C

¹ V_{DD1} is the input side supply voltage.

² V_{DDO} is the output side supply voltage.

³ See Figure 3 for the maximum rated current values for various temperatures.

⁴ Common-mode transients refer to the common-mode transients across the insulation barrier. Common-mode transients exceeding the absolute maximum ratings can cause latch-up or permanent damage.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TRUTH TABLES

Table 15. ADuM120N/ADuM121N Truth Table (Positive Logic)

V_{Ix} Input ¹	V_{DD1} State ¹	V_{DDO} State ¹	Default Low (N0), V_{Ox} Output ^{1, 2}	Default High (N1), V_{Ox} Output ^{1, 2}	Test Conditions/Comments
Low	Powered	Powered	Low	Low	Normal operation
High	Powered	Powered	High	High	Normal operation
Don't Care ³	Unpowered	Powered	Low	High	Fail-safe output
Don't Care ³	Powered	Unpowered	Indeterminate	Indeterminate	

¹ V_{Ix} and V_{Ox} refer to the input and output signals of a given channel (A or B). V_{DD1} and V_{DDO} refer to the supply voltages on the input and output sides of the given channel, respectively.

² N0 is the ADuM120N0/ADuM121N0 models, N1 is the ADuM120N1/ADuM121N1 models. See the Ordering Guide.

³ Input pins (V_{Ix}) on the same side as an unpowered supply must be in a low state to avoid powering the device through the ESD protection circuitry.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

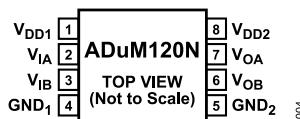
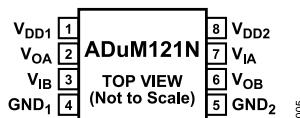


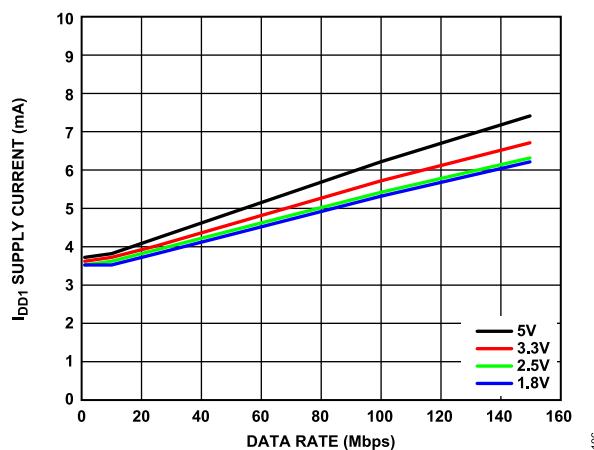
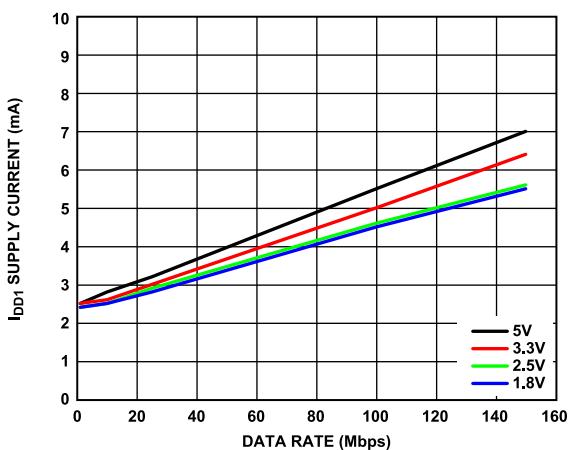
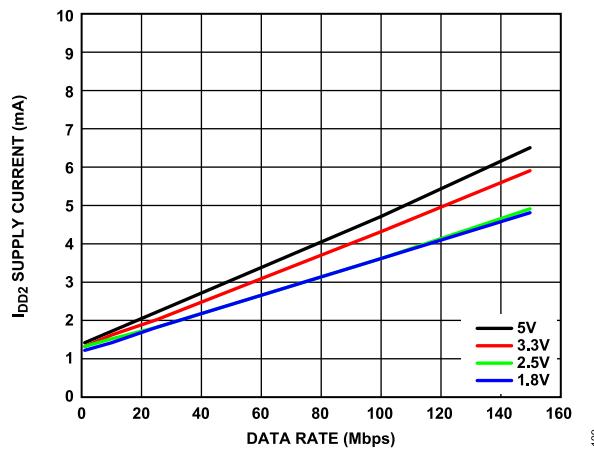
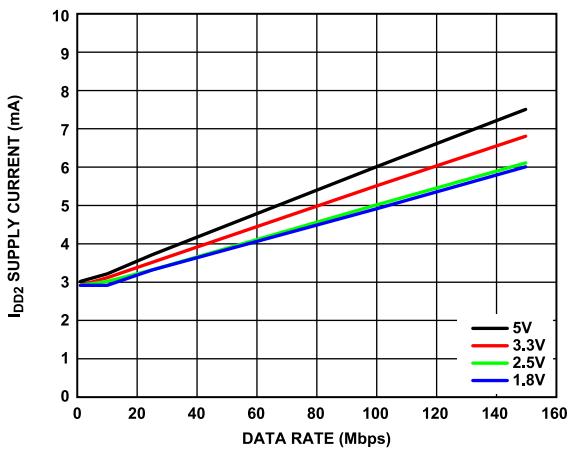
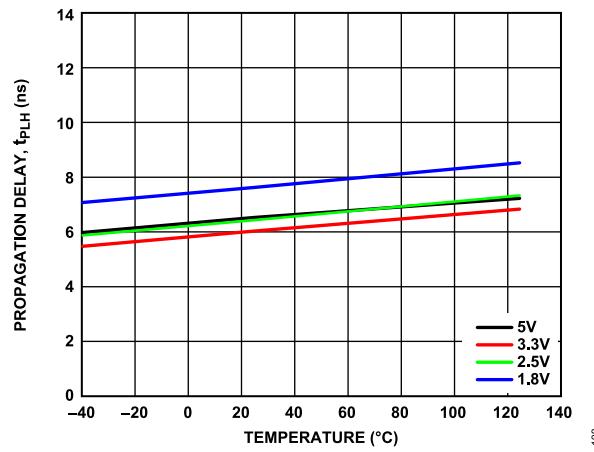
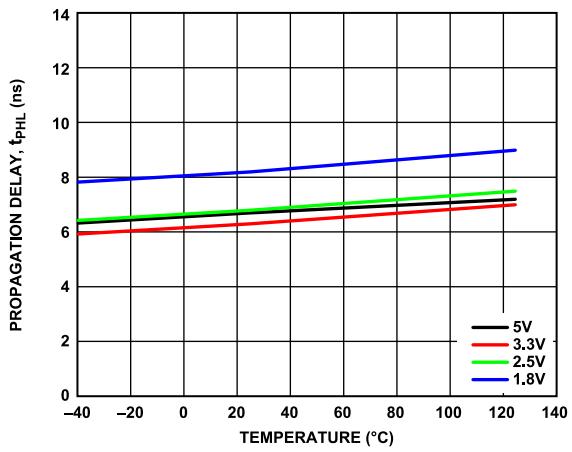
Figure 4. ADuM120N Pin Configuration

Reference the [AN-1109 Application Note](#) for specific layout guidelines.

Table 16. ADuM120N Pin Function Descriptions

Pin No.	Mnemonic	Description
1	V _{DD1}	Supply Voltage for Isolator Side 1. This pin requires a 0.01 μ F to 0.1 μ F decoupling capacitor.
2	V _{IA}	Logic Input A.
3	V _{IB}	Logic Input B.
4	GND ₁	Ground 1. This pin is the ground reference for Isolator Side 1.
5	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.
6	V _{OB}	Logic Output B.
7	V _{OA}	Logic Output A.
8	V _{DD2}	Supply Voltage for Isolator Side 2. This pin requires a 0.01 μ F to 0.1 μ F decoupling capacitor.



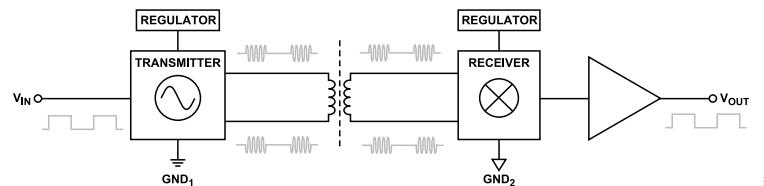






Figure 5. ADuM121N Pin Configuration

Reference the [AN-1109 Application Note](#) for specific layout guidelines.

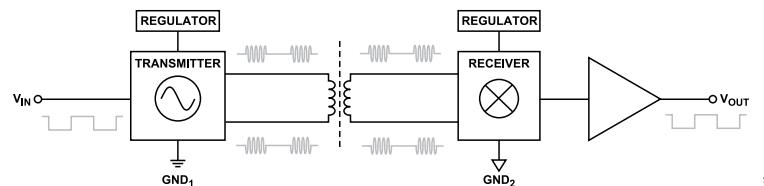
Table 17. ADuM121N Pin Function Descriptions

Pin No.	Mnemonic	Description
1	V _{DD1}	Supply Voltage for Isolator Side 1. This pin requires a 0.01 μ F to 0.1 μ F decoupling capacitor.
2	V _{OA}	Logic Output A.
3	V _{IB}	Logic Input B.
4	GND ₁	Ground 1. This pin is the ground reference for Isolator Side 1.
5	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.
6	V _{OB}	Logic Output B.
7	V _{IA}	Logic Input A.
8	V _{DD2}	Supply Voltage for Isolator Side 2. This pin requires a 0.01 μ F to 0.1 μ F decoupling capacitor.

TYPICAL PERFORMANCE CHARACTERISTICS


Figure 6. ADuM120N I_{DD1} Supply Current vs. Data Rate at Various VoltagesFigure 9. ADuM121N I_{DD1} Supply Current vs. Data Rate at Various VoltagesFigure 7. ADuM120N I_{DD2} Supply Current vs. Data Rate at Various VoltagesFigure 10. ADuM121N I_{DD2} Supply Current vs. Data Rate at Various VoltagesFigure 8. Propagation Delay for Logic High Output (t_{PLH}) vs. Temperature at Various VoltagesFigure 11. Propagation Delay for Logic Low Output (t_{PHL}) vs. Temperature at Various Voltages

APPLICATIONS INFORMATION


OVERVIEW

The ADuM120N/ADuM121N use a high frequency carrier to transmit data across an isolation barrier using iCoupler chip scale transformer coils separated by layers of polyimide isolation. With an on/off keying (OOK) technique and the differential architecture shown in [Figure 13](#) and [Figure 14](#), the ADuM120N/ADuM121N have very low propagation delay and high speed. Internal regulators and input/output design techniques allow logic and supply voltages over a wide range from 1.7 V to 5.5 V, offering voltage translation of 1.8 V, 2.5 V, 3.3 V, and 5 V logic. The architecture is designed for high common-mode transient immunity and high immunity to electrical noise and magnetic interference. Radiated emissions are minimized with a spread spectrum OOK carrier and other techniques.

[Figure 13](#) shows the operation block diagram of a single channel for the ADuM120N0/ADuM121N0 models, which have the condition of the fail-safe output state equal to low, where the carrier waveform is off when the input state is low. If the input side is off or not operating, the fail-safe output state of low (noted by the 0 in the model number) sets the output to low. For the ADuM120N1/ADuM120N1, which have a fail-safe output state of high, [Figure 14](#) shows the conditions where the carrier waveform is off when the input state is high. When the input side is off or not operating, the fail-safe output state of high (noted by the 1 in the model number) sets the output to high. See the [Ordering Guide](#) for the model numbers that have the fail-safe output state of low or the fail-safe output state of high.

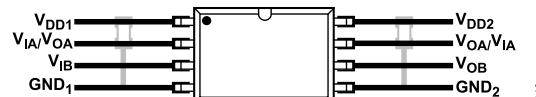

Figure 13. Operational Block Diagram of a Single Channel with a Low Fail-Safe Output State

Figure 14. Operational Block Diagram of a Single Channel with a High Fail-Safe Output State

PCB LAYOUT

The ADuM120N/ADuM121N digital isolators require no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins (see [Figure 12](#)). Bypass capacitors are most conveniently connected between Pin 1 and Pin 4 for V_{DD1} and between Pin 5 and Pin 8 for V_{DD2} . The recommended bypass capacitor value is between 0.01 μ F and 0.1 μ F. The total lead length between both ends of the capacitor and the input power supply pin must not exceed 10 mm.

Figure 12. Recommended Printed Circuit Board Layout

In applications involving high common-mode transients, ensure that board coupling across the isolation barrier is minimized. Furthermore, design the board layout such that any coupling that does occur equally affects all pins on a given component side. Failure to ensure this can cause voltage differentials between pins exceeding the [Absolute Maximum Ratings](#) of the device, thereby leading to latch-up or permanent damage.

See the [AN-1109 Application Note](#) for board layout guidelines.

APPLICATIONS INFORMATION

PROPAGATION DELAY RELATED PARAMETERS

Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. The propagation delay to a Logic 0 output can differ from the propagation delay to a Logic 1 output.



Figure 15. Propagation Delay Parameters

Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the timing of the input signal is preserved.

Channel matching is the maximum amount the propagation delay differs between channels within a single ADuM120N/ADuM121N component.

Propagation delay skew is the maximum amount the propagation delay differs between multiple ADuM120N/ADuM121N components operating under the same conditions

JITTER MEASUREMENT

Figure 16 shows the eye diagram for the ADuM120N/ADuM121N. The measurement was taken using an Agilent 81110A pulse pattern generator at 150 Mbps with pseudorandom bit sequences (PRBS) $2^{14}-1$, for 5 V supplies. Jitter was measured with the Tektronix Model 5104B oscilloscope, 1 GHz, 10 GS/s with the DPOJET jitter and eye diagram analysis tools. The result shows a typical measurement on the ADuM120N/ADuM121N with 380 ps p-p jitter.

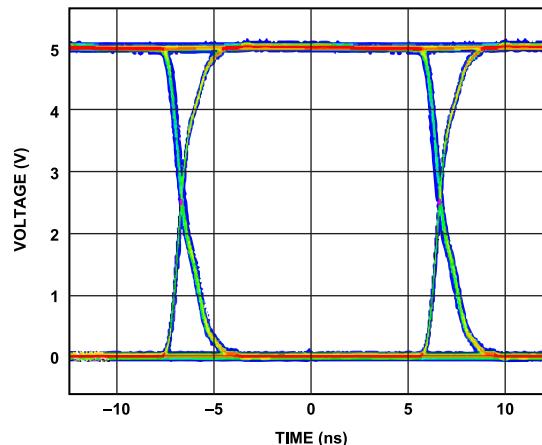


Figure 16. ADuM120N/ADuM121N Eye Diagram

OUTLINE DIMENSIONS

Package Drawing (Option)	Package Type	Package Description
R-8	SOIC_N	8-Lead Standard Small Outline Package, Narrow Body

For the latest package outline information and land patterns (footprints), go to [Package Index](#).

ORDERING GUIDE

Model ^{1,2}	Temperature Range	Package Description	Packing Quantity	Package Option
ADuM120N1BRZ	-40°C to +125°C	8-Lead SOIC_N	Tube, 98	R-8
ADuM120N1BRZ-RL7	-40°C to +125°C	8-Lead SOIC_N, Tape and Reel	Reel, 1000	R-8
ADuM120N0BRZ	-40°C to +125°C	8-Lead SOIC_N	Tube, 98	R-8
ADuM120N0BRZ-RL7	-40°C to +125°C	8-Lead SOIC_N, Tape and Reel	Reel, 1000	R-8
ADuM120N1WBRZ	-40°C to +125°C	8-Lead SOIC_N	Tube, 98	R-8
ADuM120N1WBRZ-RL7	-40°C to +125°C	8-Lead SOIC_N, Tape and Reel	Reel, 1000	R-8
ADuM120N0WBRZ	-40°C to +125°C	8-Lead SOIC_N	Tube, 98	R-8
ADuM120N0WBRZ-RL7	-40°C to +125°C	8-Lead SOIC_N, Tape and Reel	Reel, 1000	R-8
ADuM121N1BRZ	-40°C to +125°C	8-Lead SOIC_N	Tube, 98	R-8
ADuM121N1BRZ-RL7	-40°C to +125°C	8-Lead SOIC_N, Tape and Reel	Reel, 1000	R-8
ADuM121N0BRZ	-40°C to +125°C	8-Lead SOIC_N	Tube, 98	R-8
ADuM121N0BRZ-RL7	-40°C to +125°C	8-Lead SOIC_N, Tape and Reel	Reel, 1000	R-8
ADuM121N1WBRZ	-40°C to +125°C	8-Lead SOIC_N	Tube, 98	R-8
ADuM121N1WBRZ-RL7	-40°C to +125°C	8-Lead SOIC_N, Tape and Reel	Reel, 1000	R-8
ADuM121N0WBRZ	-40°C to +125°C	8-Lead SOIC_N	Tube, 98	R-8
ADuM121N0WBRZ-RL7	-40°C to +125°C	8-Lead SOIC_N, Tape and Reel	Reel, 1000	R-8

¹ Z = RoHS Compliant Part.

² W = Qualified for Automotive Applications.

NO. OF INPUTS, WITHSTAND VOLTAGE RATING, AND FAIL-SAFE OUTPUT STATE OPTIONS

Model ^{1,2}	No. of Inputs, V _{DD1} Side	No. of Inputs, V _{DD2} Side	Withstand Voltage Rating (kV rms)	Fail-Safe Output State
ADuM120N1BRZ	2	0	3	High
ADuM120N1BRZ-RL7	2	0	3	High
ADuM120N0BRZ	2	0	3	Low
ADuM120N0BRZ-RL7	2	0	3	Low
ADuM120N1WBRZ	2	0	3	High
ADuM120N1WBRZ-RL7	2	0	3	High
ADuM120N0WBRZ	2	0	3	Low
ADuM120N0WBRZ-RL7	2	0	3	Low
ADuM121N1BRZ	1	1	3	High
ADuM121N1BRZ-RL7	1	1	3	High
ADuM121N0BRZ	1	1	3	Low
ADuM121N0BRZ-RL7	1	1	3	Low
ADuM121N1WBRZ	1	1	3	High
ADuM121N1WBRZ-RL7	1	1	3	High
ADuM121N0WBRZ	1	1	3	Low
ADuM121N0WBRZ-RL7	1	1	3	Low

¹ Z = RoHS Compliant Part.

² W = Qualified for Automotive Applications.

OUTLINE DIMENSIONS

EVALUATION BOARDS

Model ¹	Description
EVAL-1CH2CHSOICEBZ	ADuM120N/ADuM121N Evaluation Board

¹ Z = RoHS Compliant Part.

AUTOMOTIVE PRODUCTS

The ADuM121N1WBRZ and the ADuM121N1WBRZ-RL7 models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the [Specifications](#) section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.