

### FEATURES

**RF output frequency range: 62.5 MHz to 8000 MHz**  
**VCO frequency range: 4 GHz to 8 GHz**  
**9 fs rms jitter at 8 GHz output**  
**17 dBm IF output power at 6 GHz RF output**  
**90 dBc LO\_IN to RF output**  
**90 dBc spurious-free dynamic range**  
**Low phase noise, voltage controlled oscillator**  
**Programmable divide by 1, 2, 4, 8, 16, 32, or 64 output**  
**3.3 V analog, digital, and mixer power supplies**  
**5 V amplifier and VCO power supply**  
**RF output mute function**  
**18.00 mm x 18.00 mm, 80-terminal LGA\_CAV**  
**Supported in the [ADIsimPLL design tool](#)**

### APPLICATIONS

**Instrumentation and measurement**  
**Automated test equipment**  
**Aerospace and defense**

### GENERAL DESCRIPTION

The ADF4401A is a fully integrated, system in package (SiP) translation loop (also known as an offset loop) module that includes a voltage controlled oscillator (VCO) and calibration phase-locked loop (PLL) circuit. Designed for highly jitter sensitive applications, this solution reduces board space and complexity compared to traditional discrete translation loop solutions designed on a printed circuit board (PCB). The time to market is significantly reduced by taking advantage of this highly integrated solution with in package circuitry and enhanced isolation that attenuates spurious components. The ADF4401A provides a frequency synthesis solution for engineers designing highly competitive systems.

The ADF4401A requires an external phase detector or phase frequency detector (PFD) and an external local oscillator (LO) to form a frequency synthesis solution.

### FUNCTIONAL BLOCK DIAGRAM

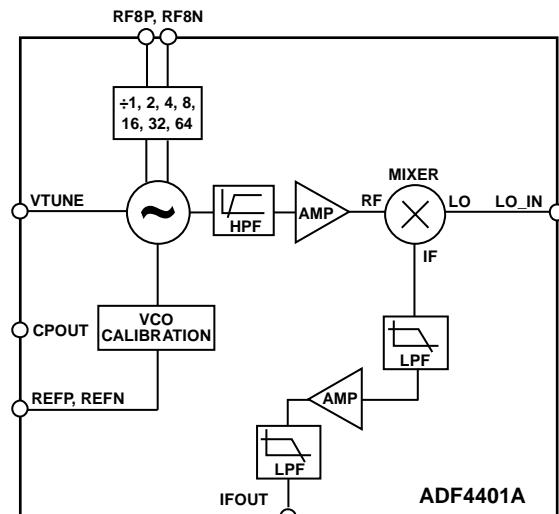



Figure 1.

25577-001

The ADF4401A implements an integrated downconversion mixing stage in the feedback loop that sets the loop gain to 1 and minimizes the in band phase noise. By combining the frequency downconversion stage and low noise, integrated, wideband, VCO technology from Analog Devices, Inc., the ADF4401A offers a wideband jitter performance of 9 fs rms at 8 GHz output. The output jitter performance is largely dependent on the performance of the external offset LO.

The ADF4401A module uses an internal PFD and VCO calibration circuitry to select the appropriate VCO band. The user can disable the calibration circuitry and close the loop using the external PFD. All on-chip registers are controlled via a serial port interface (SPI).

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Document Feedback

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
 Tel: 781.329.4700 ©2020 Analog Devices, Inc. All rights reserved.  
 Technical Support [www.analog.com](http://www.analog.com)

## TABLE OF CONTENTS

|                                                   |    |                                              |    |
|---------------------------------------------------|----|----------------------------------------------|----|
| Features .....                                    | 1  | MUXOUT and VCO Calibration Lock Detect ..... | 15 |
| Applications .....                                | 1  | Double Buffers .....                         | 16 |
| Functional Block Diagram .....                    | 1  | VCO .....                                    | 16 |
| General Description .....                         | 1  | Output Stage .....                           | 16 |
| Revision History .....                            | 2  | SPI .....                                    | 16 |
| Specifications .....                              | 3  | Applications Information .....               | 18 |
| Timing Characteristics .....                      | 6  | Device Setup .....                           | 18 |
| Absolute Maximum Ratings .....                    | 7  | VCO Calibration, a Worked Example .....      | 19 |
| Thermal Resistance .....                          | 7  | VCO Calibration Time .....                   | 20 |
| Electrostatic Discharge (ESD) Ratings .....       | 7  | Local Oscillator (LO_IN) .....               | 20 |
| ESD Caution .....                                 | 7  | External Phase Detector .....                | 21 |
| Pin Configuration and Function Descriptions ..... | 8  | Phase Detector Reference .....               | 21 |
| Typical Performance Characteristics .....         | 10 | Power Supplies .....                         | 21 |
| Theory of Operation .....                         | 13 | PCB Design Guidelines .....                  | 21 |
| Circuit Description .....                         | 14 | Output Matching .....                        | 21 |
| RF Amplifier .....                                | 14 | Register Summary .....                       | 22 |
| Downconversion Mixer .....                        | 14 | Register Details .....                       | 23 |
| IF Amplifier .....                                | 14 | Outline Dimensions .....                     | 39 |
| Calibration Reference Input .....                 | 14 | Ordering Guide .....                         | 39 |
| RF N Divider .....                                | 14 |                                              |    |
| PFD and Charge Pump .....                         | 15 |                                              |    |

## REVISION HISTORY

12/2020—Revision 0: Initial Version

## SPECIFICATIONS

Supply voltage ( $AV_{DD}$ ) =  $VCC\_PLL$  =  $VCC\_CAL$  =  $VRF\_INT$  =  $VRF\_OUT$  =  $VCC\_DIV$  =  $VCC\_NDIV$  =  $VCC\_REG$  =  $VCC\_MIX$  = 3.3 V  $\pm$  5%,  $VCC\_VCO$  =  $VCC\_RF$  =  $VCC\_IF1$  =  $VCC\_IF2$  = 5 V  $\pm$  5%, GND = 0 V, dBm referred to 50  $\Omega$ , and  $T_A$  =  $-25^{\circ}\text{C}$  to  $+85^{\circ}\text{C}$ , unless otherwise noted.

Table 1.

| Parameter                                                            | Min  | Typ       | Max  | Unit          | Test Conditions/Comments                                                                        |
|----------------------------------------------------------------------|------|-----------|------|---------------|-------------------------------------------------------------------------------------------------|
| RF OUTPUT CHARACTERISTICS                                            |      |           |      |               |                                                                                                 |
| RF Output Frequency                                                  | 62.5 |           | 8000 | MHz           |                                                                                                 |
| RF Output Power (RF_OUT_POWER = 11)                                  |      | 8         |      | dBm           | RF8N = 1 GHz, 3.3 nH inductor to VRF_OUT, single-ended                                          |
|                                                                      |      | 1         |      | dBm           | RF8N = 8 GHz, 3.3 nH inductor to VRF_OUT, single-ended                                          |
| RF Output Power Variation                                            |      | $\pm 1$   |      | dB            | RF8P or RF8N = 5 GHz                                                                            |
| RF Output Power Variation (over Frequency)                           |      | $\pm 4$   |      | dB            | RF8P or RF8N = 1 GHz to 8 GHz                                                                   |
| Harmonic Content (RF8P and RF8N)                                     |      |           |      |               |                                                                                                 |
| Second Harmonic                                                      |      | −25       |      | dBc           | Fundamental VCO output                                                                          |
|                                                                      |      | −25       |      | dBc           | Divided VCO output                                                                              |
| Third Harmonic                                                       |      | −12       |      | dBc           | Fundamental VCO output                                                                          |
|                                                                      |      | −15       |      | dBc           | Divided VCO output                                                                              |
| LO_IN to RF Output                                                   | 90   |           |      | dBc           |                                                                                                 |
| Spurious-Free Dynamic Range                                          | 90   |           |      | dBc           | Within 100 MHz offset of carrier                                                                |
|                                                                      | −90  |           |      | dBc           | >100 MHz offset of carrier, RF output ( $RF_{OUT}$ ) > 1 GHz                                    |
| EXTERNAL LO                                                          |      |           |      |               |                                                                                                 |
| LO_IN Frequency (Doubler Disabled)                                   | 3.0  |           | 9.0  | GHz           |                                                                                                 |
| LO_IN Frequency (Doubler Enabled)                                    | 1.5  |           | 4.5  | GHz           |                                                                                                 |
| External LO Power (LO_IN)                                            | −3   | 0         | +3   | dBm           |                                                                                                 |
| External LO Port Return Loss                                         |      | 8         |      | dB            |                                                                                                 |
| VCO Frequency Feedthrough                                            |      | −23       |      | dBm           | Measured at LO_IN                                                                               |
| Other Spurious Feedthrough                                           |      | −40       |      | dBm           | Measured at LO_IN                                                                               |
| Input Power for 1 dB Output Compression (P1dB)                       |      | 6         |      | dBm           |                                                                                                 |
| INTERMEDIATE FREQUENCY (IF) OUTPUT                                   |      |           |      |               |                                                                                                 |
| IF Output Frequency ( $f_{IF}$ )                                     | 50   |           | 1000 | MHz           |                                                                                                 |
| IF Output Power                                                      |      | 17        |      | dBm           | 6 GHz RF output, internal RF setting = 1, LO power = 0 dBm, LO_IN = 6.6 GHz, $f_{IF}$ = 600 MHz |
|                                                                      |      | 12        |      | dBm           | Internal RF setting = 0, LO power = 0 dBm, LO_IN = 6.6 GHz, $f_{IF}$ = 600 MHz                  |
| LO_IN to IFOUT Isolation                                             |      | −82       |      | dBc           | Internal RF setting = 0, LO_IN = 0 dBm, Main contributor is IFOUT harmonics                     |
| Other Spurious Signals on IFOUT                                      |      | −20       |      | dBc           |                                                                                                 |
| IF Output Return Loss                                                |      | −9        |      | dB            |                                                                                                 |
| Mismatch for Compliant Operation                                     |      | −10       |      | dB            | $\leq 900$ MHz                                                                                  |
|                                                                      |      | −2        |      | dB            | $> 900$ MHz                                                                                     |
| LOGIC INPUTS                                                         |      |           |      |               |                                                                                                 |
| Input High Voltage ( $V_{INH}$ )                                     | 1.5  |           |      | V             | $\overline{CS}$ , SDIO, SCLK, X2_EN, and CE are 3 V logic                                       |
| Input Low Voltage ( $V_{INL}$ )                                      |      | 0.4       |      | V             |                                                                                                 |
| Input High Current ( $I_{INH}$ ) and Input Low Current ( $I_{INL}$ ) |      | $\pm 1$   |      | $\mu\text{A}$ | $\overline{CS}$ , SDIO, SCLK, and CE                                                            |
| Input Capacitance ( $C_{IN}$ )                                       |      | $\pm 100$ |      | $\mu\text{A}$ | X2_EN                                                                                           |
|                                                                      |      | 3.0       |      | pF            |                                                                                                 |

| Parameter                                       | Min                    | Typ   | Max  | Unit    | Test Conditions/Comments                                                                                                                                                |
|-------------------------------------------------|------------------------|-------|------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>LOGIC OUTPUTS</b>                            |                        |       |      |         |                                                                                                                                                                         |
| Output High Voltage ( $V_{OH}$ )                | $AV_{DD} - 0.4$<br>1.5 | 1.875 |      | V<br>V  | 3.3 V output selected<br>1.8 V output selected                                                                                                                          |
| Output High Current ( $I_{OH}$ )                |                        |       | 500  | $\mu$ A |                                                                                                                                                                         |
| Output Low Voltage ( $V_{OL}$ )                 |                        |       | 0.4  | V       | Output low current ( $I_{OL}$ ) = 500 $\mu$ A                                                                                                                           |
| <b>POWER SUPPLIES</b>                           |                        |       |      |         |                                                                                                                                                                         |
| $AV_{DD}$ (Except VCO, Mixer, and Amplifier)    | 3.15                   | 3.3   | 3.45 | V       | $V_{CC\_PLL}$ , $V_{CC\_CAL}$ , $V_{RF\_OUT}$ , $V_{RF\_INT}$ , $V_{CC\_DIV}$ , $V_{CC\_NDIV}$ , and $V_{CC\_REG}$ are grouped as $AV_{DD}$ and are at the same voltage |
| $V_{CC\_MIX}$                                   | 3.15                   | 3.3   | 3.45 | V       | Must be equal to $AV_{DD}$                                                                                                                                              |
| $V_{CC\_VCO}$                                   | 4.75                   | 5     | 5.25 | V       |                                                                                                                                                                         |
| $V_{CC\_RF}$                                    | 4.75                   | 5     | 5.25 | V       | Voltages must equal $V_{CC\_VCO}$                                                                                                                                       |
| $V_{CC\_IF1}$                                   | 4.75                   | 5     | 5.25 | V       |                                                                                                                                                                         |
| $V_{CC\_IF2}$                                   | 4.75                   | 5     | 5.25 | V       |                                                                                                                                                                         |
| Calibration PLL Supply Current ( $I_{PLL}$ )    |                        |       |      |         | $V_{CC\_CAL}$ , $V_{CC\_NDIV}$ , $V_{CC\_PLL}$ , and $V_{CC\_REG}$                                                                                                      |
|                                                 |                        | 88    |      | mA      | Calibration mode                                                                                                                                                        |
|                                                 |                        | 26    |      | mA      | Translation loop mode                                                                                                                                                   |
| Output Divider Supply Current ( $I_{CC\_DIV}$ ) |                        | 63    |      | mA      | RF output disabled, internal RF enabled                                                                                                                                 |
| Divider = 1                                     |                        | 75    |      | mA      | RF output and internal RF enabled                                                                                                                                       |
| Divider = 2                                     |                        | 89    |      | mA      |                                                                                                                                                                         |
| Divider = 4                                     |                        | 103   |      | mA      |                                                                                                                                                                         |
| Divider = 8                                     |                        | 112   |      | mA      |                                                                                                                                                                         |
| Divider = 16                                    |                        | 117   |      | mA      |                                                                                                                                                                         |
| Divider = 32                                    |                        | 121   |      | mA      |                                                                                                                                                                         |
| Divider = 64                                    |                        | 124   |      | mA      |                                                                                                                                                                         |
| RF Output Supply Current ( $I_{RF\_OUT}$ )      |                        | 4     |      | mA      | RF output disabled                                                                                                                                                      |
|                                                 |                        | 17    |      | mA      | $RF_{OUT\_POWER} = -4$ dBm                                                                                                                                              |
|                                                 |                        | 31    |      | mA      | $RF_{OUT\_POWER} = -1$ dBm                                                                                                                                              |
|                                                 |                        | 44    |      | mA      | $RF_{OUT\_POWER} = 2$ dBm                                                                                                                                               |
|                                                 |                        | 57    |      | mA      | $RF_{OUT\_POWER} = 5$ dBm                                                                                                                                               |
| Internal RF Supply Current ( $I_{RF\_INT}$ )    |                        | <1    |      | $\mu$ A | Internal RF disabled                                                                                                                                                    |
|                                                 |                        | 14    |      | mA      | $POUT_{AUX} = \text{low power for 0}$                                                                                                                                   |
|                                                 |                        | 28    |      | mA      | $POUT_{AUX} = \text{high power for 1}$                                                                                                                                  |
| VCO Supply Current ( $I_{CC\_VCO}$ )            | 140                    | 200   |      | mA      |                                                                                                                                                                         |
| RF Amplifier Current ( $I_{CC\_RF}$ )           | 76                     | 90    |      | mA      |                                                                                                                                                                         |
| $I_{CC\_IF1}$ Amplifier Current                 | 76                     | 90    |      | mA      |                                                                                                                                                                         |
| $I_{CC\_IF2}$ Amplifier Current                 | 76                     | 90    |      | mA      |                                                                                                                                                                         |
| Mixer Supply Current ( $I_{CC\_MIX}$ )          |                        |       |      |         |                                                                                                                                                                         |
| LO Doubler Disabled                             | 120                    | 140   |      | mA      |                                                                                                                                                                         |
| LO Doubler Enabled                              | 136                    | 160   |      | mA      |                                                                                                                                                                         |
| 3.3 V Total Current                             | 386                    | 473   |      | mA      | RF output enabled, RF output Setting 3, RF divider Setting 1, internal RF Setting 1, calibration PLL enabled, mixer LO doubler enabled                                  |
|                                                 |                        | 308   |      | mA      | RF output enabled, RF output Setting 3, RF divider Setting 1, internal RF Setting 1, calibration PLL disabled, mixer LO doubler disabled                                |
| 5 V Total Current                               | 368                    | 470   |      | mA      |                                                                                                                                                                         |

| Parameter                                              | Min | Typ  | Max       | Unit     | Test Conditions/Comments                                                                                                                                                 |
|--------------------------------------------------------|-----|------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CALIBRATION PLL SPECIFICATIONS                         |     |      |           |          | When used as internal PLL for frequency tuning, PLL and charge pump specifications do not apply when used as VCO only                                                    |
| REFP and REFN Characteristics                          |     |      |           |          |                                                                                                                                                                          |
| Input Frequency                                        | 10  |      | 500       | MHz      |                                                                                                                                                                          |
| Input Sensitivity                                      |     |      |           |          |                                                                                                                                                                          |
| Single-Ended Mode                                      | 0.4 |      | $AV_{DD}$ | V p-p    | REFP biased at $AV_{DD}/2$ , ac coupling ensures $AV_{DD}/2$ bias                                                                                                        |
| Differential Mode                                      | 0.4 |      | 1.8       | V p-p    | Low voltage differential signal (LVDS) and low voltage positive emitter coupled logic (LVPECL) compatible, REFP and REFN biased at 2.1 V, ac coupling ensures 2.1 V bias |
| $C_{IN}$                                               |     |      |           |          |                                                                                                                                                                          |
| Single-Ended Mode                                      |     | 6.9  |           | pF       |                                                                                                                                                                          |
| Differential Mode                                      |     | 1.4  |           | pF       |                                                                                                                                                                          |
| Input Current                                          |     |      | $\pm 150$ | $\mu A$  |                                                                                                                                                                          |
|                                                        |     |      | 300       | $\mu A$  |                                                                                                                                                                          |
|                                                        |     |      | 125       | MHz      |                                                                                                                                                                          |
| Phase Detector Frequency                               |     |      |           |          | Single-ended reference programmed<br>Differential reference programmed                                                                                                   |
| CHARGE PUMP (CALIBRATION ONLY)                         |     |      |           |          |                                                                                                                                                                          |
| Charge Pump Current ( $I_{CP}$ ), Sink and Source      |     |      |           |          |                                                                                                                                                                          |
| High Value                                             |     | 5.6  |           | mA       |                                                                                                                                                                          |
| Low Value                                              |     | 0.35 |           | mA       |                                                                                                                                                                          |
| VCO CHARACTERISTICS                                    |     |      |           |          |                                                                                                                                                                          |
| VCO Frequency                                          | 4   |      | 8         | GHz      | VCO noise in open-loop conditions                                                                                                                                        |
| Fundamental VCO Phase Noise Performance                |     |      |           |          |                                                                                                                                                                          |
|                                                        |     | –117 |           | $dBc/Hz$ | 100 kHz offset from 4.0 GHz carrier                                                                                                                                      |
|                                                        |     | –139 |           | $dBc/Hz$ | 1 MHz offset from 4.0 GHz carrier                                                                                                                                        |
|                                                        |     | –156 |           | $dBc/Hz$ | 10 MHz offset from 4.0 GHz carrier                                                                                                                                       |
|                                                        |     | –162 |           | $dBc/Hz$ | 100 MHz offset from 4.0 GHz carrier                                                                                                                                      |
|                                                        |     | –112 |           | $dBc/Hz$ | 100 kHz offset from 5.7 GHz carrier                                                                                                                                      |
|                                                        |     | –136 |           | $dBc/Hz$ | 1 MHz offset from 5.7 GHz carrier                                                                                                                                        |
|                                                        |     | –153 |           | $dBc/Hz$ | 10 MHz offset from 5.7 GHz carrier                                                                                                                                       |
|                                                        |     | –161 |           | $dBc/Hz$ | 100 MHz offset from 5.7 GHz carrier                                                                                                                                      |
|                                                        |     | –109 |           | $dBc/Hz$ | 100 kHz offset from 8.0 GHz carrier                                                                                                                                      |
|                                                        |     | –133 |           | $dBc/Hz$ | 1 MHz offset from 8.0 GHz carrier                                                                                                                                        |
|                                                        |     | –152 |           | $dBc/Hz$ | 10 MHz offset from 8.0 GHz carrier                                                                                                                                       |
|                                                        |     | –162 |           | $dBc/Hz$ | 100 MHz offset from 8.0 GHz carrier                                                                                                                                      |
| VTUNE Input Range                                      | 1.2 |      | 2.75      | V        |                                                                                                                                                                          |
| VCO 3 dB Tuning Port Bandwidth                         |     | 100  |           | MHz      |                                                                                                                                                                          |
| INTEGRATED RMS JITTER (100 Hz to 100 MHz) <sup>1</sup> |     | 9    |           | fs       | 8 GHz output, includes LO_IN and REF_PFD noise                                                                                                                           |

<sup>1</sup> RF8N = 6.5 GHz, LO\_IN = 6 GHz, and the reference to external PFD (REF\_PFD) = 500 MHz. SMA100B is used as both the LO\_IN signal and the REF\_PFD signal.

## TIMING CHARACTERISTICS

See Figure 2, Figure 3, and Figure 4.

Table 2. SPI Timing

| Parameter    | Min | Typ | Max | Unit | Description                                                 |
|--------------|-----|-----|-----|------|-------------------------------------------------------------|
| $f_{SCLK}$   |     |     | 50  | MHz  | SCLK frequency                                              |
| $t_{SCLK}$   | 20  |     |     | ns   | SCLK period                                                 |
| $t_{HIGH}$   | 10  |     |     | ns   | SCLK pulse width high                                       |
| $t_{LOW}$    | 10  |     |     | ns   | SCLK pulse width low                                        |
| $t_{DS}$     | 5   |     |     | ns   | SDIO setup time                                             |
| $t_{DH}$     | 5   |     |     | ns   | SDIO hold time                                              |
| $t_{ACCESS}$ | 10  |     |     | ns   | SCLK falling edge to SDIO valid propagation delay           |
| $t_z$        | 10  |     |     | ns   | $\overline{CS}$ rising edge to SDIO high-z                  |
| $t_s$        | 5   |     |     | ns   | $\overline{CS}$ falling edge to SCLK rising edge setup time |
| $t_h$        | 5   |     |     | ns   | SCLK rising edge to $\overline{CS}$ rising edge hold time   |

### Timing Diagrams

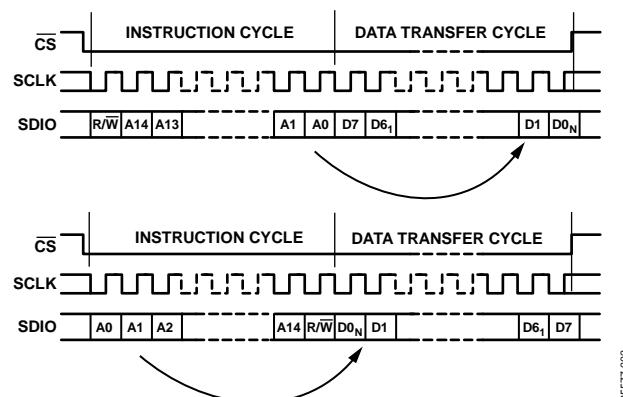



Figure 2. SPI Timing, MSB First (Upper) and LSB First (Lower)

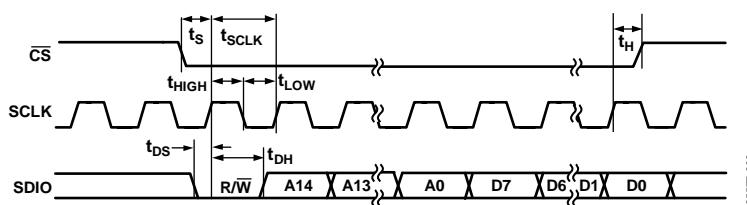



Figure 3. SPI Write Operation Timing

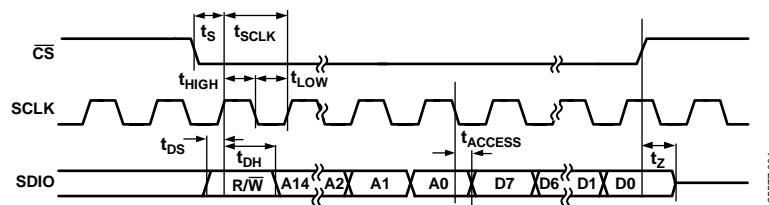



Figure 4. SPI Read Operation Timing

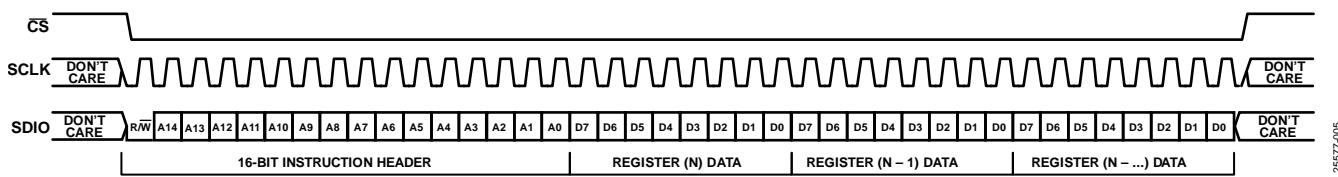



Figure 5. 3-Wire, MSB First, Descending Data, Streaming

## ABSOLUTE MAXIMUM RATINGS

T<sub>A</sub> = 25°C, unless otherwise noted.

Table 3.

| Parameter                                                 | Rating                             |
|-----------------------------------------------------------|------------------------------------|
| AV <sub>DD</sub> Rails to GND <sup>1</sup>                | -0.3 V to +3.6 V                   |
| AV <sub>DD</sub> Rails to Each Other                      | -0.3 V to +0.3 V                   |
| VCC_VCO to AV <sub>DD</sub>                               | -0.3 V to AV <sub>DD</sub> + 2.8 V |
| VCC_RF, VCC_IF1, VCC_IF2, and VCC_VCO to GND <sup>1</sup> | -0.3 V to +5.5 V                   |
| VCC_MIX to AV <sub>DD</sub>                               | -0.3 V to VCC_MIX + 0.3 V          |
| VCC_MIX to GND <sup>1</sup>                               | -0.3 V to +3.6 V                   |
| CPOUT to GND <sup>1</sup>                                 | -0.3 V to AV <sub>DD</sub> + 0.3 V |
| VTUNE to GND <sup>1</sup>                                 | -0.3 V to AV <sub>DD</sub> + 0.3 V |
| Digital Input and Output Voltage to GND <sup>1</sup>      | -0.3 V to AV <sub>DD</sub> + 0.3 V |
| Analog Input and Output Voltage to GND <sup>1</sup>       | -0.3 V to AV <sub>DD</sub> + 0.3 V |
| REFP and REFN to GND <sup>1</sup>                         | -0.3 V to AV <sub>DD</sub> + 0.3 V |
| REFP to REFN                                              | ±2.1 V                             |
| Temperature                                               |                                    |
| Operating Range                                           | -25°C to +85°C                     |
| Storage Range                                             | -65°C to +125°C                    |
| Maximum Junction                                          | 125 °C                             |
| Reflow Soldering                                          |                                    |
| Peak                                                      | 260 °C                             |
| Time at Peak                                              | 30 sec                             |
| Transistor Count                                          |                                    |
| CMOS                                                      | 152000                             |
| Bipolar                                                   | 8000                               |

<sup>1</sup> GND = 0 V.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

## THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

θ<sub>JA</sub> is the natural convection, junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. θ<sub>Jc</sub> is the junction to case thermal resistance.

Table 4. Thermal Resistance

| Package Type         | θ <sub>JA</sub> | θ <sub>Jc</sub> | Unit |
|----------------------|-----------------|-----------------|------|
| CE-80-1 <sup>1</sup> | 27.9            | 12.1            | °C/W |

<sup>1</sup> Test Condition 1: thermal impedance simulated values are based on use of a 4-layer PCB with the thermal impedance paddle soldered to a ground plane.

## ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

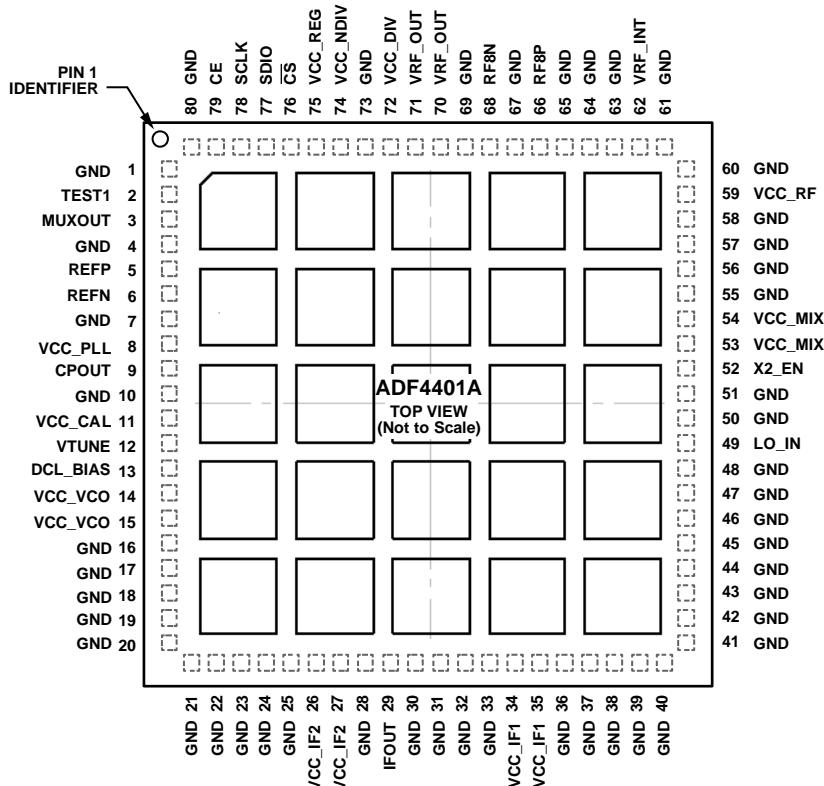
Human body model (HBM) per ANSI/ESDA/JEDDEC JS-001. Charged device model (CDM) per ANSI/ESDA/JEDEC JS-002.

### ESD Ratings for ADF401A

Table 5. ADF401A, 80-Terminal LGA\_CAV

| ESD Model | Withstand Threshold (V) | Class |
|-----------|-------------------------|-------|
| HBM       | ±500 <sup>1</sup>       | 1B    |
| CDM       | ±125 <sup>2</sup>       | C0B   |

<sup>1</sup> All pins except IFOUT rated at ±2500 V HBM classification test level (Class 2).


<sup>2</sup> All pins except IFOUT, LO\_IN, RF8P, and RF8N rated at ±500 V CDM classification test level (Class C2A). RF8P pin and RF8N pin rated at ±250 V CDM classification test level (Class C1).

## ESD CAUTION



**ESD (electrostatic discharge) sensitive device.** Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



## NOTES

1. THE LAND GRID ARRAY (LGA) HAS AN EXPOSED PAD THAT MUST BE SOLDERED TO A METAL PLATE ON THE PCB FOR MECHANICAL REASONS AND TO GND.

25577406

Figure 6. Pin Configuration, Top View

Table 6. Pin Function Descriptions

| Pin No.                                                                                             | Mnemonic | Description                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 4, 7, 10, 16 to 25, 28, 30 to 33, 36 to 48, 50, 51, 55 to 58, 60, 61, 63, 64, 65, 67, 69, 73, 80 | GND      | Ground. Tie all ground pins together.                                                                                                                                                                                                                         |
| 2                                                                                                   | TEST1    | Internal Test Pin. Tie to GND.                                                                                                                                                                                                                                |
| 3                                                                                                   | MUXOUT   | Multiplexer Output. The MUXOUT pin allows the digital lock detect for the calibration PLL and scaled RF to be externally accessible. The MUXOUT pin can be programmed to output the register settings in 4-wire SPI mode.                                     |
| 5                                                                                                   | REFP     | Reference Input. The signal at REFP is used as a reference for the calibration PLL.                                                                                                                                                                           |
| 6                                                                                                   | REFN     | Complementary Reference Input. If unused, ac couple the REFN pin to GND.                                                                                                                                                                                      |
| 8                                                                                                   | VCC_PLL  | Analog Power Supply. The VCC_PLL pin ranges from 3.15 V to 3.45 V.                                                                                                                                                                                            |
| 9                                                                                                   | CPOUT    | Charge Pump Output. When enabled, this output provides $\pm I_{CP}$ to the external loop filter. The output of the loop filter is connected to VTUNE to drive the internal VCO.                                                                               |
| 11                                                                                                  | VCC_CAL  | Power Supply for Internal Calibration Monitor Circuit. The voltage on the VCC_CAL pin ranges from 3.15 V to 3.45 V. VCC_CAL must have the same value as AV <sub>DD</sub> , nominally 3.3 V.                                                                   |
| 12                                                                                                  | VTUNE    | Control Input to the VCO. This voltage determines the output frequency and is derived from filtering the CPOUT output voltage.                                                                                                                                |
| 13                                                                                                  | DCL_BIAS | Internal Compensation Node for VCO Noise Roll-Off. Internally, the DCL_BIAS pin is connected with 100 nF to GND, but larger capacitors to GND can be added if required.                                                                                       |
| 14, 15                                                                                              | VCC_VCO  | Power Supply for the VCO. The voltage on the VCC_VCO pin ranges from 4.75 V to 5.25 V. Place decoupling capacitors to the analog ground plane as close to the VCC_VCO pin as possible. For optimal performance, this supply must be clean and have low noise. |
| 26, 27                                                                                              | VCC_IF2  | 5 V Supply to the IF Amplifier Connected to the IFOUT Pin.                                                                                                                                                                                                    |

| Pin No. | Mnemonic | Description                                                                                                                                                                                                                        |
|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29      | IFOUT    | Amplified Downconverted Output from the Mixer. Connect the IFOUT pin to an external phase detector or PFD.                                                                                                                         |
| 34, 35  | VCC_IF1  | 5 V Supply to the IF Amplifier Connected to the Mixer IF Output.                                                                                                                                                                   |
| 49      | LO_IN    | External RF Input to the Downconversion Mixer. Power can range from -3 dBm to +3 dBm. Take care to isolate LO_IN from the VCO circuitry and RF output. The LO_IN pin is matched internally to $50\ \Omega$ and must be ac-coupled. |
| 52      | X2_EN    | Mixer Doubler Enable. A logic high to X2_EN doubles the LO_IN frequency to the downconversion mixer.                                                                                                                               |
| 53, 54  | VCC_MIX  | Power Supply for Downconversion Mixer. The voltage on the VCC_MIX pin ranges from 3.15 V to 3.45 V. VCC_MIX must have the same value as AV <sub>DD</sub> , nominally 3.3 V.                                                        |
| 59      | VCC_RF   | 5 V Supply to the RF Amplifier Connected to the Mixer RF Input.                                                                                                                                                                    |
| 62      | VRF_INT  | Power Supply for PLL and VCO Auxiliary RF Output Driving the Mixer. The voltage on the VRF_INT pin ranges from 3.15 V to 3.45 V. VRF_INT must have the same value as AV <sub>DD</sub> , nominally 3.3 V.                           |
| 66      | RF8P     | RF Output. The output level is programmable. The VCO fundamental output or a divided down version is available. Pull-up inductors to VRF_OUT increase the output power level.                                                      |
| 68      | RF8N     | Complementary RF Output. The output level is programmable. The VCO fundamental output or a divided down version is available. Pull-up inductors to VRF_OUT increase the output power level.                                        |
| 70, 71  | VRF_OUT  | Power Supply for PLL and VCO Main RF Output. The voltage on the VRF_OUT pin ranges from 3.15 V to 3.45 V. VRF_OUT must have the same value as AV <sub>DD</sub> , nominally 3.3 V.                                                  |
| 72      | VCC_DIV  | Power Supply for the VCO Output Stage and Divider. The voltage on the VCC_DIV pin must have the same value as AV <sub>DD</sub> , nominally 3.3 V.                                                                                  |
| 74      | VCC_NDIV | N Divider Power Supply. The voltage on the VCC_NDIV pin must have the same value as AV <sub>DD</sub> , nominally 3.3 V.                                                                                                            |
| 75      | VCC_REG  | Regulator Input for 1.8 V Digital Logic. The voltage on the VCC_REG pin must have the same value as AV <sub>DD</sub> , nominally 3.3 V.                                                                                            |
| 76      | CS       | Chip Select, CMOS Input. When CS goes high, the data stored in the shift register is loaded into the register that is selected by the address bits.                                                                                |
| 77      | SDIO     | Serial Data Input Output. This input is a high impedance CMOS input.                                                                                                                                                               |
| 78      | SCLK     | Serial Clock Input. Data is clocked into the 24-bit shift register on the clock rising edge. This input is a high impedance CMOS input.                                                                                            |
| 79      | CE       | Chip Enable. Connect to 3.3 V or AV <sub>DD</sub> . A logic low on the CE pin shuts down the PLL and VCO circuitry.                                                                                                                |
|         | EPAD     | Exposed Pad. The land grid array (LGA) has an exposed pad that must be soldered to a metal plate on the PCB for mechanical reasons and to GND.                                                                                     |

## TYPICAL PERFORMANCE CHARACTERISTICS

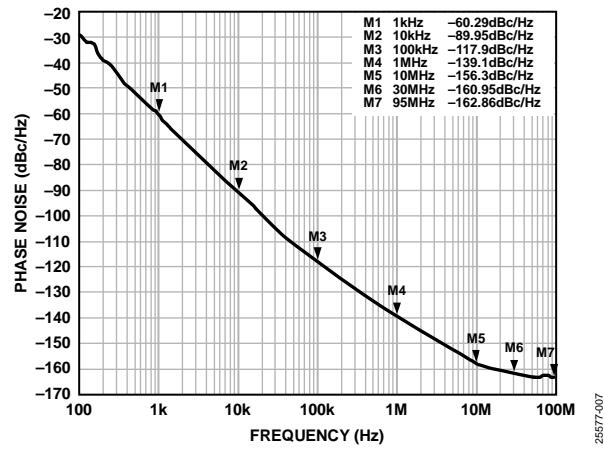
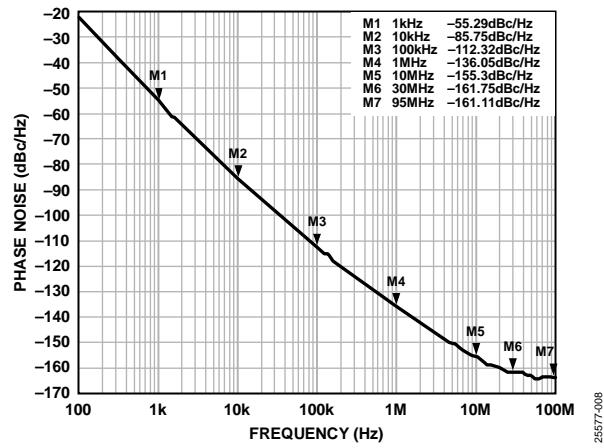
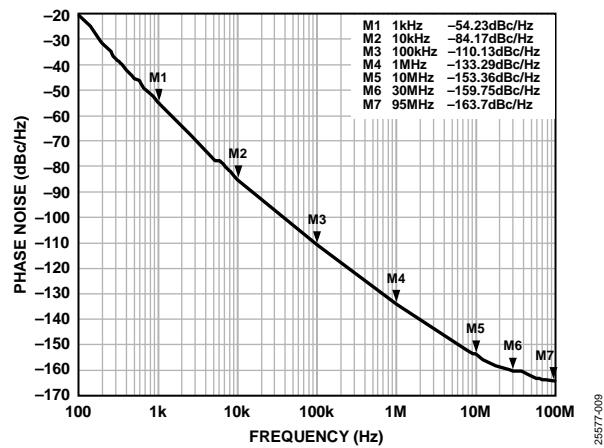
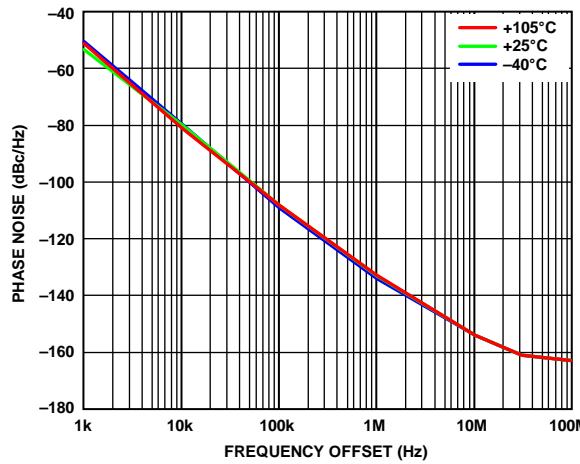
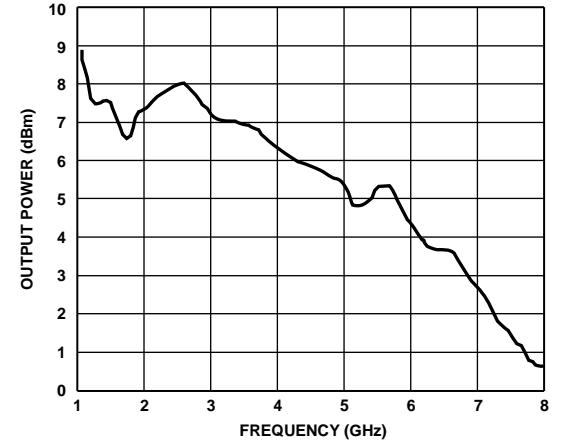
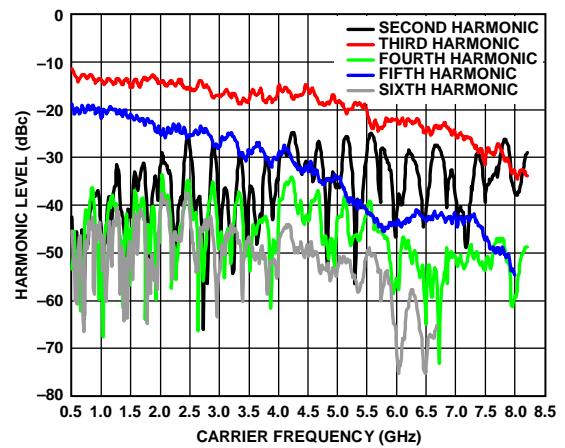
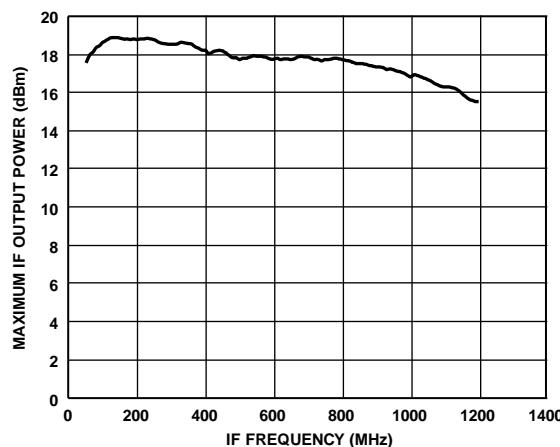
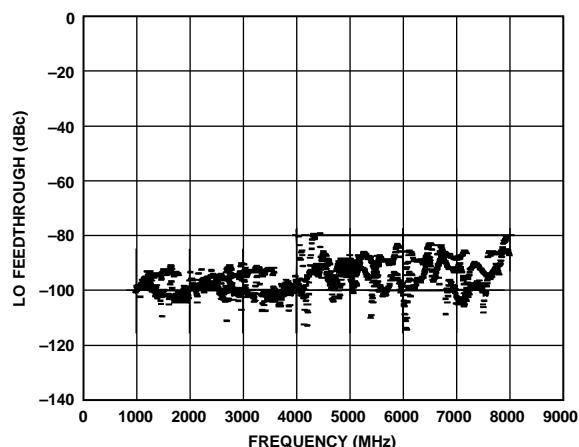
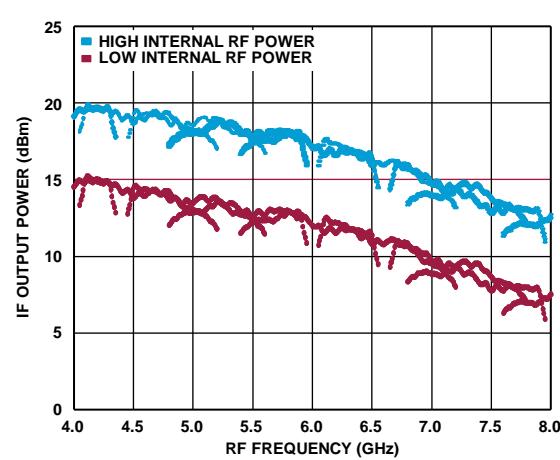
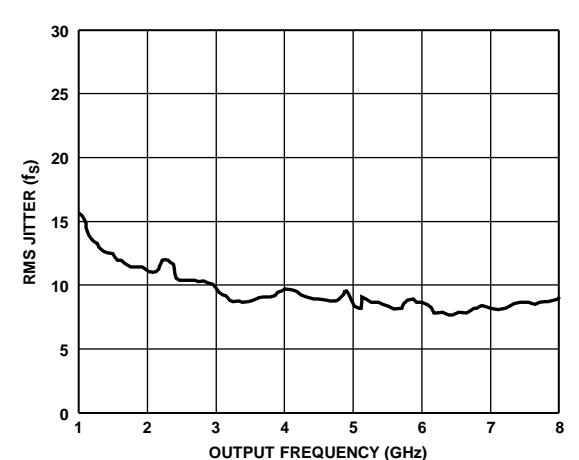





Figure 7. Open-Loop VCO Phase Noise, 4.0 GHz, V<sub>CC\_VCO</sub> = 5 VFigure 8. Open-Loop VCO Phase Noise, 5.7 GHz, V<sub>CC\_VCO</sub> = 5 VFigure 9. Open-Loop VCO Phase Noise, 8.0 GHz, V<sub>CC\_VCO</sub> = 5 VFigure 10. Open-Loop VCO Phase Noise over Temperature, 8.0 GHz, V<sub>CC\_VCO</sub> = 5 V

Figure 11. RF8N Single-Ended Output Power, De-Embedded Board and Cable Measurement, (3.3 nH Inductors, 10 pF AC Coupling Capacitors Limit Power at Low Frequencies), Maximum Power Setting

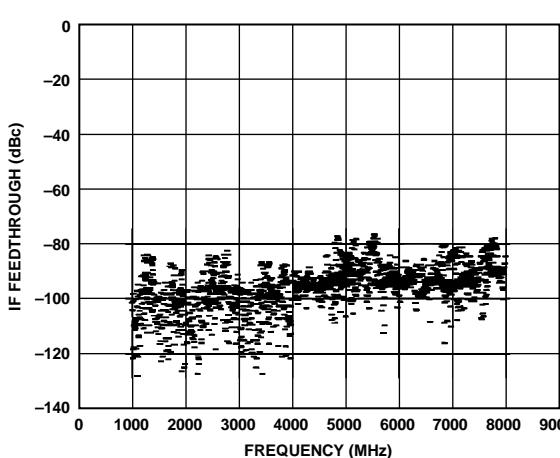






Figure 12. RF8P and RF8N Output Harmonics, De-Embedded Board and Cable Measurement, Combined Using Balun

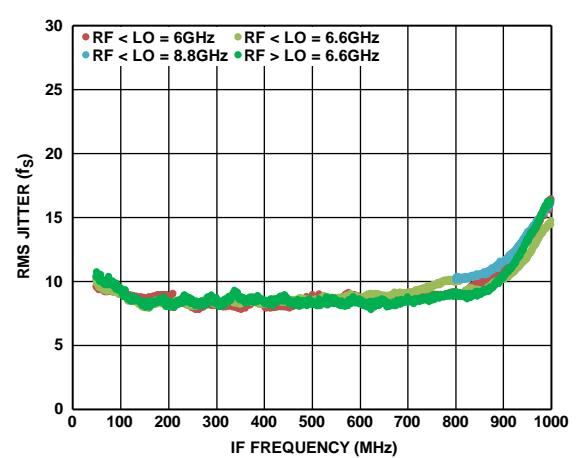



25577-013




25577-016




25577-014



25577-017



25577-015



25577-018

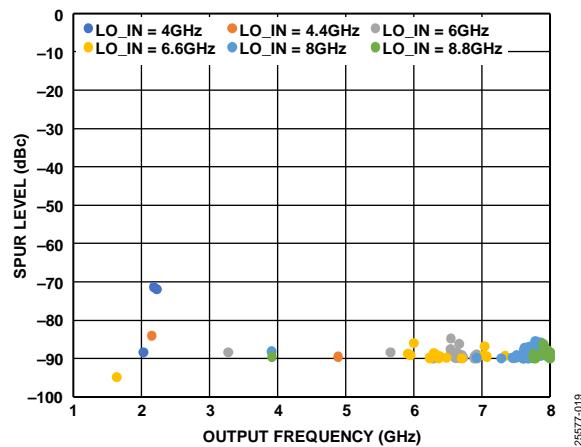



Figure 19. Spurious Signals on RF Output Within  $\pm 100$  MHz Offset from Carrier

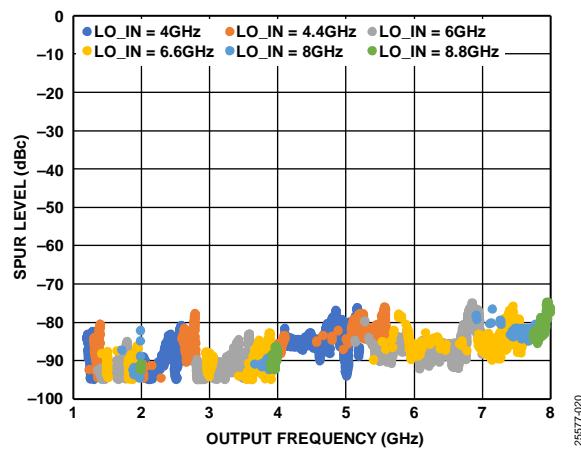



Figure 20. Spurious Signals on RF Output Outside of  $\pm 100$  MHz Offset from Carrier

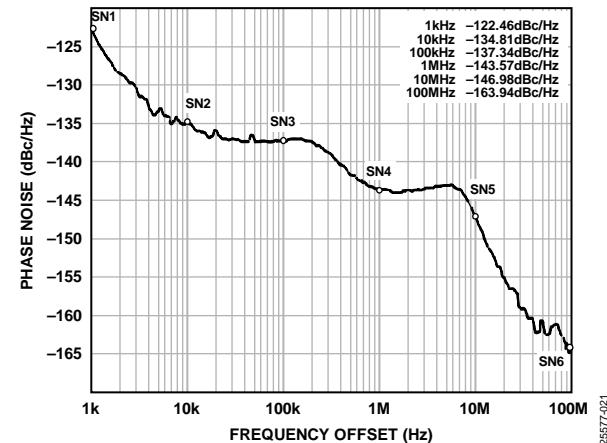



Figure 21. Closed-Loop Phase Noise at 6.45 GHz Output, LO\_IN = 6 GHz, SMA100B Used as External LO and Reference to External Phase Detector

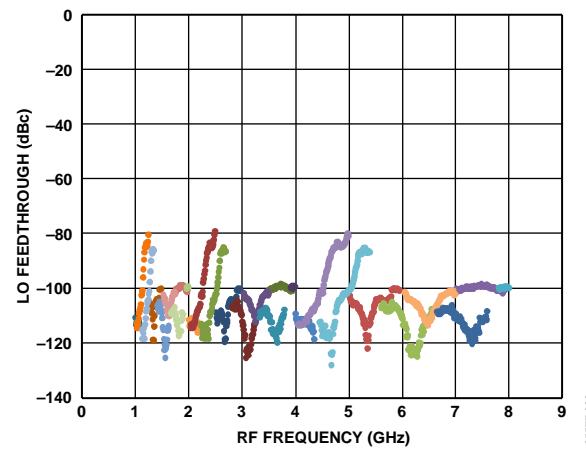



Figure 22. LO\_IN to IFOUT Feedthrough for Different LO\_IN Frequencies

## THEORY OF OPERATION

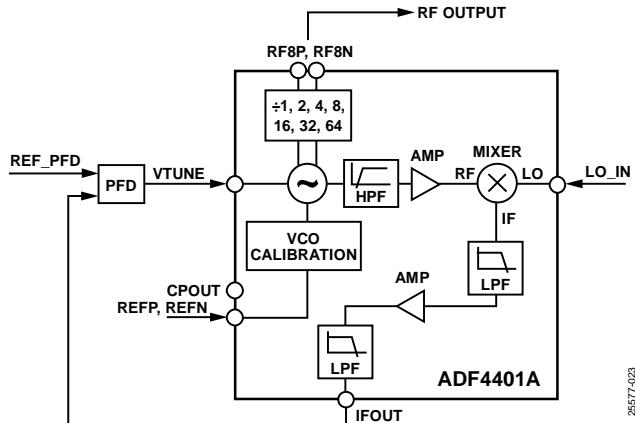



Figure 23. ADF4401A Translation Loop Block Diagram

The ADF4401A is an SiP translation loop (offset loop) module that includes the VCO and calibration PLL circuit, a downconversion mixer, and RF and IF amplifiers. This SiP translates the lower REF\_PFD frequency of the external PFD up to a higher frequency range of 4 GHz to 8 GHz, as determined by the LO\_IN pin.

The phase noise in a PLL circuit can be described as having two components: a flat noise component known as the PLL noise floor and a 1/f noise profile component known as the PLL 1/f noise.

A PLL circuit with a low N divider value allows the user to design a frequency synthesizer with correspondingly low phase

noise performance. See the RF N Divider section for more information.

The translation loop synthesizer decouples the required channel spacing from the N divider value to optimize the phase noise of the PLL. In this translation loop synthesizer circuit, N = 1 is used.

As shown in Figure 23, the ADF4401A locks the higher RF output frequency range of 4 GHz to 8 GHz to the REF\_PFD frequency of the external PFD. The integrated mixer and the LO\_IN pin perform the divider function of this PLL circuit. The integrated RF amplifiers provide the required LO isolation, and the IF amplifiers provide the required external IFOUT levels.

With the LO in the feedback loop, the equation at the external PFD is as follows for high-side injection (IF = LO - RF):

$$REF\_PFD/R = (LO\_IN - RF8x)/N$$

where:

R is the R divider.

N is the N divider.

For low-side injection (IF = RF - LO),

$$REF\_PFD/R = (RF8x - LO\_IN)/N$$

In this circuit, R and N = 1. Thus, the output frequency is RF8x = LO\_IN ± REF\_PFD.

## CIRCUIT DESCRIPTION

### RF AMPLIFIER

The ADF4401A integrates an RF amplification stage between the VCO output stage and the RF input of the mixer (see Figure 24). The primary function of the RF amplifiers is to provide the required drive level for the mixer and increase the effective isolation of the LO on the RF output. A high-pass filter (HPF) helps ensure spectral purity at the RF output and minimizes the IF feedthrough to the RF output of the ADF4401A.

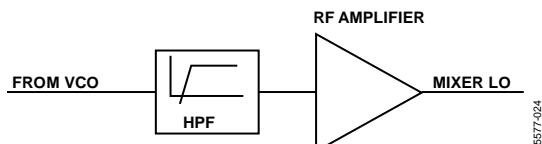



Figure 24. RF Amplifiers

25577-024

### DOWNCONVERSION MIXER

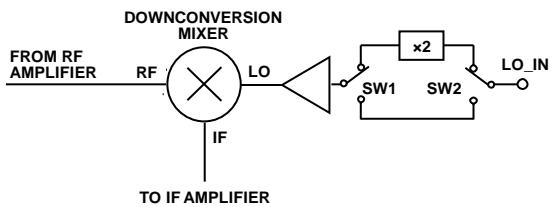



Figure 25. Downconversion Mixer

25577-025

The mixer selected for the translation loop meets the following requirements:

- Operates in the required frequency range
- High RF to LO isolation
- Low noise figure

The LO\_IN pin is connected to the mixer LO input. An optional doubler on the LO path allows the user to select either the LO\_IN frequency or 2x LO\_IN frequency to drive the downconversion mixer. This doubler reduces the requirement for external LO frequencies considerably.

### IF AMPLIFIER

The ADF4401A integrates an IF amplification stage between the output of the mixer and the IFOUT pin (see Figure 26). The IF amplifier increases the LO to IF isolation of the mixer and provides the required 15 dBm IFOUT drive level. Low-pass filters (LPFs) placed before and after the IF amplifier remove unwanted high frequency products from the mixer.

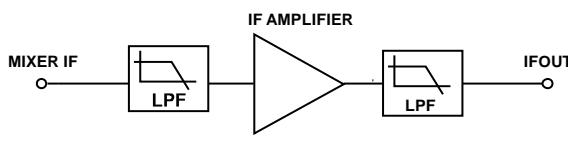



Figure 26. IF Amplifiers

25577-026

### CALIBRATION REFERENCE INPUT

Figure 27 shows the reference input stage of the calibration PLL. This reference input assists the VCO in selecting the most appropriate VCO band for optimal performance. When the

appropriate band is selected, the reference input can be shut down, and the VCO can be locked with an external PFD circuit.

The reference input can accept both single-ended and differential signals. Use the reference mode bit (REG0022, Bit 6) to select the input mode. To use a differential signal on the reference input, program REG0022, Bit 6 to 1. When using a differential signal, SW1 and SW2 are open, SW3 and SW4 are closed, and the current source that drives the differential pair of transistors switches on. The differential signal is buffered and provided to an emitter coupled logic (ECL) to the CMOS converter.

When a single-ended signal is used as the reference, connect the reference signal to REFP and program REG0022, Bit 6 to 0. When using a single-ended signal, SW1 and SW2 are closed, SW3 and SW4 are open, and the current source that drives the differential pair of transistors switches off.

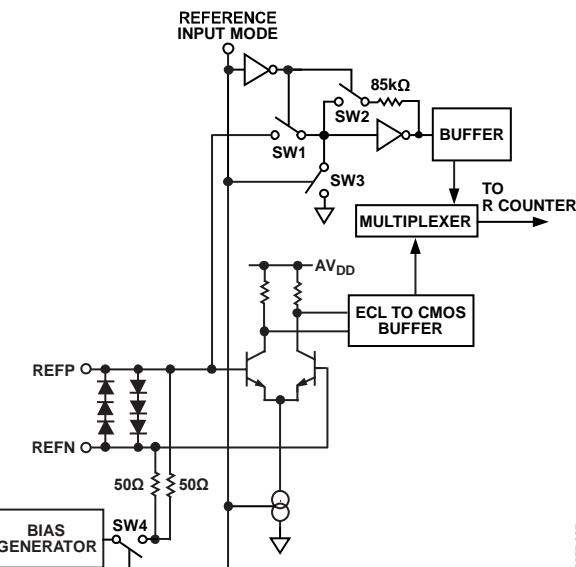



Figure 27. Reference Input Stage, Differential Mode

25577-027

### RF N DIVIDER

The RF N divider allows a division ratio in the calibration PLL feedback path. Determine the division ratio by the integer value of N (INT), main fractional value (FRAC1), auxiliary fractional value (FRAC2), and auxiliary modulus value (MOD2) that the RF N divider comprises.

### INT, FRAC1, FRAC2, MOD1, MOD2, and R Counter Relationship

The INT, FRAC1, FRAC2, MOD1, and MOD2 values, in conjunction with the R counter, make it possible to generate output frequencies that are spaced by fractions of the PFD frequency ( $f_{PFD}$ ). For more information, see the VCO Calibration, a Worked Example section.

Calculate the VCO output frequency ( $f_{VCO\_OUT}$ ) using the following equation:

$$f_{VCO\_OUT} = f_{PFD} \times N \quad (1)$$

Calculate  $f_{PFD}$  using the following equation:

$$f_{PFD} = REF_{IN} \times \frac{1}{R \times (1 + T)} \quad (2)$$

where:

$REF_{IN}$  is the reference frequency input.

$R$  is the preset divide ratio of the binary 5-bit programmable reference counter (1 to 32).

$T$  is the  $REF_{IN}$  divide by 2 bit (0 or 1).

Calculate the desired value of the feedback N counter using the following equation:

$$N = INT + \frac{FRAC2}{MOD2} \quad (3)$$

where:

$INT$  is the 16-bit integer value. In integer mode,  $INT = 16$  to 32,767 for the 4/5 prescaler, and 64 to 65,535 for the 8/9 prescaler. In fractional mode,  $INT = 23$  to 32,767 for the 4/5 prescaler, and 75 to 65,535 for the 8/9 prescaler.

$FRAC1$  is the numerator of the primary modulus (0 to 33,554,431).

$FRAC2$  is the numerator of the 14-bit auxiliary modulus (0 to 16,383).

$MOD2$  is the programmable, 14-bit auxiliary fractional modulus (2 to 16,383).

$MOD1$  is a 25-bit primary modulus with a fixed value of  $2^{25} = 33,554,432$ .

Equation 1, Equation 2, and Equation 3 result in a low frequency resolution with no residual frequency error.

To apply Equation 3, perform the following steps:

1. Calculate N by dividing  $f_{VCO\_OUT}/f_{PFD}$ . The integer value of this number forms INT.
2. Subtract INT from the full N value.
3. Multiply the remainder by  $2^{25}$ . The integer value of this number forms FRAC1.
4. Calculate MOD2 based on the channel spacing frequency ( $f_{CHSP}$ ) using the following equation:

$$MOD2 = f_{PFD}/GCD(f_{PFD}, f_{CHSP}) \quad (4)$$

where:

$f_{CHSP}$  is the desired channel spacing frequency.

$GCD(f_{PFD}, f_{CHSP})$  is the greatest common divisor of the PFD frequency and the channel spacing frequency.

5. Calculate FRAC2 using the following equation:

$$FRAC2 = ((N - INT) \times 2^{25} - FRAC1) \times MOD2 \quad (5)$$

The FRAC2 fraction and MOD2 fraction result in outputs with zero frequency error for channel spacing when

$$f_{PFD}/GCD(f_{PFD}, f_{CHSP}) = MOD2 < 16,383 \quad (6)$$

If zero frequency error is not required, the MOD1 and MOD2 denominators operate together to create a 39-bit resolution modulus.

## R Counter

The 5-bit R counter allows the input reference frequency (input to REFP and REFN) to be divided down to produce the reference clock to the PFD. Division ratios from 1 to 32 are allowed.

## PFD AND CHARGE PUMP

The calibration PFD takes inputs from the internal R counter and N counter and produces an output proportional to the phase and frequency difference between them. Figure 28 is a simplified schematic of the PFD. The PFD includes a fixed delay element that sets the width of the antibacklash pulse. This pulse ensures that there is no dead zone in the PFD transfer function and provides a consistent reference spur level. Set the phase detector polarity to positive on this device because of the positive tuning of the VCO.

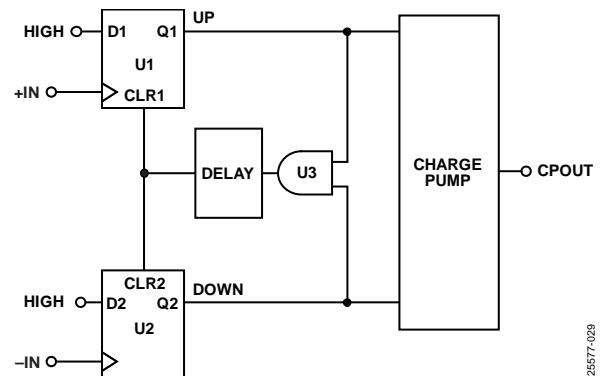



Figure 28. PFD Simplified Schematic

25577-039

## MUXOUT AND VCO CALIBRATION LOCK DETECT

The output multiplexer on the ADF4401A allows the user to access various internal points on the chip. Figure 29 shows the MUXOUT section in block diagram form. The lock detect indicator is only for the calibration PLL.

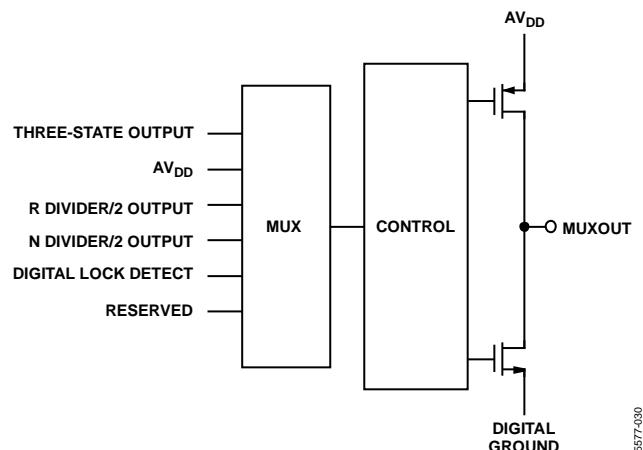



Figure 29. MUXOUT Schematic

25577-030

## DOUBLE BUFFERS

The FRAC1 value, FRAC2 value, MOD2 value, reference doubler, reference divide by 2 (RDIV2), R counter value, and charge pump current setting are double buffered in the ADF4401A. Two events must occur before the ADF4401A uses a new value for any of the double buffered settings. First, the new value must latch into the device by writing to the appropriate register, and second, a new write to the REG0010 register must be performed.

For example, to ensure that the MOD2 value loads correctly, the REG0010 register must be written to every time the MOD2 value updates.

## VCO

The VCO core in the ADF4401A consists of four separate VCO cores: Core A, Core B, Core C, and Core D. Each core uses 256 overlapping bands, which allows the device to cover a wide frequency range with small VCO sensitivity ( $K_v$ ) and optimal phase noise and spurious performance.

The proper VCO and band are chosen automatically by the VCO and band select logic whenever the REG0010 register is updated and automatic calibration is enabled. The VTUNE pin is disconnected from the output of the loop filter and is connected to an internal reference voltage.

The R counter output is used as the clock for the band select logic. After band selection, normal PLL action resumes. The nominal value of  $K_v$  along with an average value are shown in Figure 30 when the N divider is driven from the VCO output, or the  $K_v$  value is divided by D. D is the output divider value if the N divider is driven from the RF output divider.

The VCO shows the variation of  $K_v$  as the tuning voltage, VTUNE, varies both within the band and from band to band. For wideband applications covering a wide frequency range (and changing output dividers), a value of 80 MHz/V provides the most accurate  $K_v$ , because this value is closest to the average value.

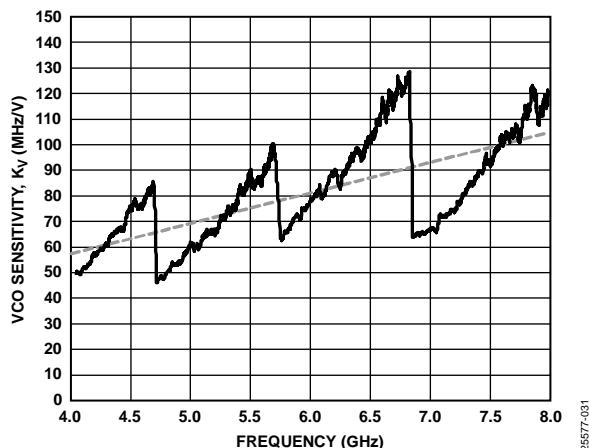



Figure 30. VCO Sensitivity,  $K_v$  vs. Frequency

## OUTPUT STAGE

The RF8P and RF8N pins of the ADF4401A connect to the collectors of a bipolar negative positive negative (NPN) differential pair driven by buffered outputs of the VCO, as shown in Figure 31. The ADF4401A contains internal 50  $\Omega$  resistors connected to the VRF\_OUT pins. To optimize the power dissipation vs. the output power requirements, the tail current of the differential pair is programmable using REG0025, Bits[1:0]. Four current levels can be set. These levels provide approximate output power levels of -4 dBm, -1 dBm, 2 dBm, and 5 dBm. Levels of -4 dBm and -1 dBm can be achieved by ac coupling into a 50  $\Omega$  load. The 2 dBm and 5 dBm levels must be used with an external shunt inductor to VRF\_OUT, or else the output stage may compress. An inductor has a narrower operating frequency than a 50  $\Omega$  resistor. For accurate power levels, refer to the Typical Performance Characteristics section. Add an external shunt inductor to provide higher power levels, which is less wideband than the internal bias only. Terminate the unused complementary output with a circuit similar to the used output.

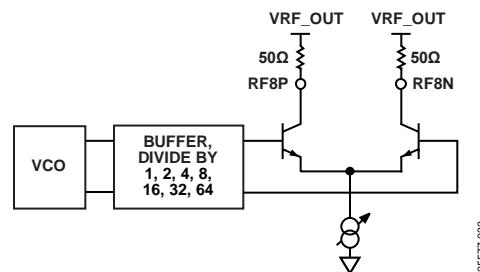



Figure 31. Output Stage

## SPI

The SPI of the ADF4401A allows the user to configure the device as required via a 3-wire or 4-wire SPI port. This interface provides users with added flexibility and customization. The SPI consists of four control lines: SCLK, SDIO, CS, and MUXOUT. MUXOUT is the serial data output in 4-wire SPI mode. The timing requirements for the SPI port are detailed in Table 2.

The SPI protocol consists of a read and write bit and 15 register address bits, followed by eight data bits. Both the address and data fields are organized with the MSB first and end with the LSB by default. Figure 3 and Figure 4 show the timing diagrams for SPI writes and reads, respectively. The significant bit order can be changed via the REG0000 register, Bit 1 (LSB\_FIRST) setting, and the related timing diagram is shown in Figure 2.

The ADF4401A input logic level for the write cycle is compatible with a 1.8 V logic level. On a read cycle, both the SDIO and MUXOUT pins are configurable for 1.8 V (default) or 3.3 V output levels by the LEV\_SEL bit setting.

**SPI Stream Mode**

The ADF4401A supports stream mode, where data bits are loaded to or read from registers serially without writing the register address (instruction word). Stream mode is useful in time critical applications when a large amount of data must be transferred or when some registers must be updated repeatedly.

The slave device starts reading or writing data to this address and continues as long as  $\overline{CS}$  is asserted and single-byte writes are not enabled (Bit 7 in the REG0001 register). The slave device automatically increments or decrements the address depending on the setting of the address ascension bit (Bit 2 in the REG0000 register).

The instruction header starts with a Logic 0 to indicate a write sequence and addresses the register. Then, the data for registers (N, N – 1, and N – 2) are loaded consecutively without any assertion in CS.

The registers are organized into eight bits, and if a register requires more than eight bits, sequential register addresses are used. This organization enables using stream mode and simplifies loading. For example, FRAC1WORD is stored in the REG0017, REG0016, REG0015, and REG0014 registers (MSB to LSB). These registers can be loaded by using the REG0016 register and sending the whole 24-bit data afterward, as shown in Figure 5.

## APPLICATIONS INFORMATION

### DEVICE SETUP

The recommended sequence of steps to set up the ADF4401A are as follows:

1. Set up the SPI.
2. Perform the initialization sequence.
3. Perform the frequency update sequence for the internal PLL.
4. Change the mode from internal PLL to external PFD.
5. Perform the frequency update sequence for the translation loop.

#### Step 1: Set Up the SPI

Initialize the SPI. Write the values in Table 7 to the REG0000 register and REG0001 register.

Table 7. SPI Setup

| Address | Setting | Notes                             |
|---------|---------|-----------------------------------|
| 0x00    | 0x18    | 4-wire SPI                        |
| 0x01    | 0x00    | Stalling, master readback control |

#### Step 2: Initialization Sequence

Write to each register in reverse order from Address 0x7C to Address 0x10. Select the appropriate values to generate the desired frequency. The frequency update sequence follows to generate the desired output frequency.

#### Step 3: Frequency Update Sequence (Internal PLL)

Frequency updates require updating MOD2, FRAC1, FRAC2, and INT. Therefore, the update sequence must be as follows:

1. REG001A (new MOD2WORD[13:8])
2. REG0019 (new MOD2WORD[7:0])
3. REG0018 (new FRAC2WORD[13:7])
4. REG0017 (new FRAC2WORD[6:0])
5. REG0016 (new FRAC1WORD[23:16])
6. REG0015 (new FRAC1WORD[15:8])
7. REG0014 (new FRAC1WORD[7:0])
8. REG0011 (new BIT\_INTEGER\_WORD[15:8])
9. REG0010 (new BIT\_INTEGER\_WORD[7:0])

The frequency change occurs on the write to the REG0010 register.

The unchanged registers do not need to be updated. For example, for an integer N PLL configuration (fractional parts are not used), skip Step 1 to Step 7. In this case, the only required updates are the REG0011 register and REG0010 register.

#### Step 4: External PFD Operation

The VTUNE input is switched to the external PFD and the VCO locks using the translation loop module.

To improve performance, it is recommended to power off the internal PLL synthesizer by setting REG001E, Bit 2 = 1.

Alternatively, if the switching speed between frequencies is to be minimized, leave the internal PLL powered up and take the following steps:

1. Place the internal PLL charge pump in tristate. REG003E, Bits[3:2] = 0.
2. Disable the fractional-N  $\Sigma$ - $\Delta$  engine, REG002B, Bit 0 = 1.
3. Set the R divider to 0. REG001F, Bits[4:0] = 0.
4. Set the N divider to the maximum value, 65535. REG0010, Bits[7:0] = 255 and REG0011, Bits[7:0] = 255.

#### Step 5: Frequency Update Sequence (Translation Loop)

Change the external PFD frequency and external LO frequency, if required. Frequency updates require reenabling the internal PFD, switching VTUNE to use the internal PFD, and locking the VCO with the new frequency. Then, the VTUNE input is switched to the external PFD, and the VCO locks to the new frequency using the translation loop module.

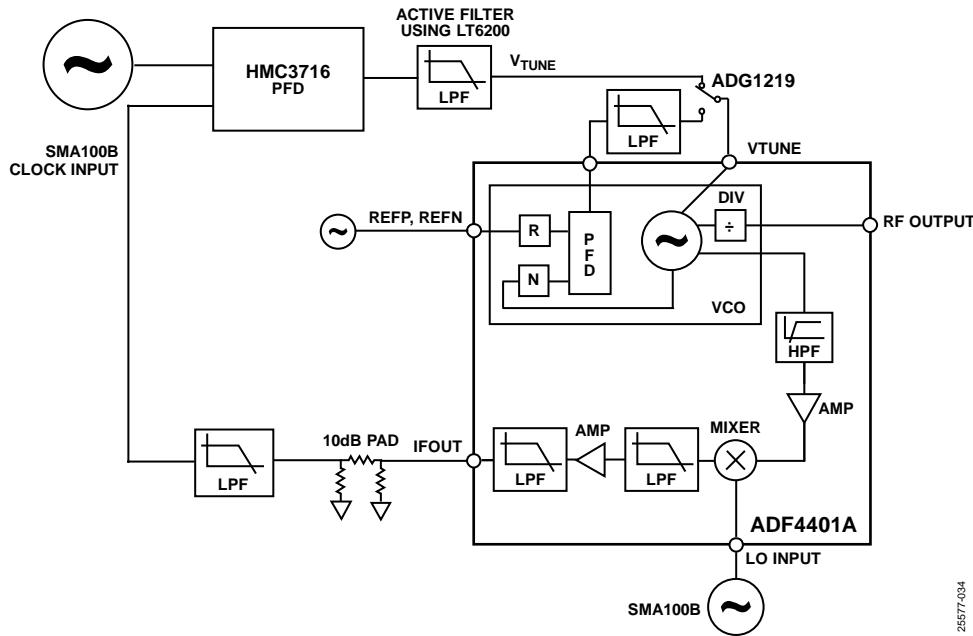



Figure 32. ADF4401A Evaluation Setup Block Diagram

25577-034

## VCO CALIBRATION, A WORKED EXAMPLE

Internal PLL blocks (internal PFD and internal N and R dividers) are used for VCO calibration. All parameters are referred to as internal PLL in this section. Use the following equations to program the ADF4401A synthesizer:

$$f_{RFOUT} = \left( INT + \frac{FRAC1 + \frac{FRAC2}{MOD2}}{MOD1} \right) \times \frac{f_{PFD}}{RF \text{ Divider}} \quad (7)$$

where:

$f_{RFOUT}$  is the RF output frequency.

$INT$  is the integer division factor.

$FRAC1$  is the fractionality.

$FRAC2$  is the auxiliary fractionality.

$MOD1$  is the fixed 25-bit modulus.

$MOD2$  is the auxiliary modulus.

$RF \text{ Divider}$  is the output divider that divides down the VCO frequency.

$$f_{PFD} = REF_{IN} \times (1/(R \times (1 + T))) \quad (8)$$

where:

$REF_{IN}$  is the reference frequency input.

$R$  is the reference division factor.

$T$  is the reference divide by 2 bit (0 or 1).

For example, in a universal mobile telecommunication system (UMTS), where a 2112.8 MHz  $f_{RFOUT}$  is required, a 122.88 MHz  $REF_{IN}$  is available. The ADF4401A VCO operates in the frequency range of 4 GHz to 8 GHz. Therefore, the RF divider of 2 must be used (VCO frequency = 4225.6 MHz,  $RF_{OUT}$  = VCO frequency/RF divider = 4225.6 MHz/2 = 2112.8 MHz).

The feedback path is also important. In this example, the VCO output is fed back before the output divider (see Figure 33).

In this example, the 122.88 MHz reference signal is divided by 2 to generate a  $f_{PFD}$  of 61.44 MHz. The desired channel spacing frequency is 200 kHz.

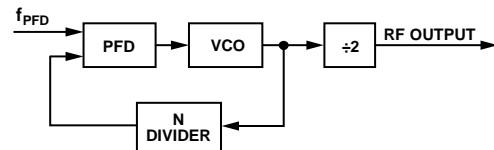



Figure 33. Loop Closed Before Output Divider

25577-033

The values used in this worked example are as follows:

$$N = f_{VCO\_OUT}/f_{PFD} = 4225.6 \text{ MHz}/61.44 \text{ MHz} = 68.7760416666666667 \quad (9)$$

where:

$N$  is the desired value of the feedback counter,  $N$ .

$f_{VCO\_OUT}$  is the output frequency of the VCO without using the output divider.

$f_{PFD}$  is the frequency of the phase frequency detector.

$$INT = INT(VCO \text{ frequency}/f_{PFD}) = 68 \quad (10)$$

$$FRAC = 0.7760416666666667 \quad (11)$$

where  $FRAC$  is the fractional part of the  $N$ .

$$MOD1 = 33,554,432 \quad (12)$$

$$FRAC1 = INT(MOD1 \times FRAC) = 26,039,637 \quad (13)$$

$$\text{Remainder} = 0.3333333333 \text{ or } 1/3 \quad (14)$$

$$MOD2 = f_{PFD}/\text{GCD}(f_{PFD}, f_{CHSP}) = 61.44 \text{ MHz}/\text{GCD}(61.44 \text{ MHz}, 200 \text{ kHz}) = 1536 \quad (15)$$

where GCD is the greatest common divisor operant.

$$FRAC2 = \text{Remainder} \times 1536 = 512 \quad (16)$$

From Equation 8,

$$f_{PFD} = (122.88 \text{ MHz} \times (1/2)) = 61.44 \text{ MHz} \quad (17)$$

$$2112.8 \text{ MHz} = 61.44 \text{ MHz} \times ((INT + (FRAC1 + FRAC2/MOD2)/2^{25}))/2 \quad (18)$$

where:

INT = 68.

FRAC1 = 26,039,637.

MOD2 = 1536.

FRAC2 = 512.

RF Divider = 2.

## VCO CALIBRATION TIME

The VCO calibration settling time divides into a number of settings. The total lock time for changing frequencies is the sum of the four separate times: synthesizer lock, VCO band selection, automatic level calibration (ALC), and calibration PLL settling time.

### Synthesizer Lock

The synthesizer lock timeout ensures that the VCO calibration DAC, which forces the VCO tune voltage (VTUNE), has settled to a steady value for the band select circuitry. SYNTH\_LOCK\_TIMEOUT and timeout select the length of time the DAC is allowed to settle to the final voltage before the VCO calibration process continues to the next phase (VCO band selection).

The PFD frequency is the clock for this logic, and the duration is set using the following equation:

$$\frac{\text{SYNTH\_LOCK\_TIMEOUT} \times 1024 + \text{timeout}}{f_{PFD}} \quad (19)$$

where:

SYNTH\_LOCK\_TIMEOUT is programmed in REG0033.

Timeout is programmed in REG0031 and REG0032.

The calculated time must be greater than or equal to 20  $\mu\text{s}$ .

For the SYNTH\_LOCK\_TIMEOUT bit, the minimum value is 2 and the maximum value is 31. For the timeout bit, the minimum value is 2 and the maximum value is 1023.

### VCO Band Selection

VCO\_BAND\_DIV (programmed in the REG0030 register) and the  $f_{PFD}$  are used to generate the VCO band selection clock as follows:

$$f_{BSC} = \frac{f_{PFD}}{\text{VCO\_BAND\_DIV}} \quad (20)$$

where  $f_{BSC}$  is the band select clock frequency.

The calculated frequency must be less than 2.4 MHz.

16 clock cycles are required for one VCO core and band calibration step, and the total band selection process takes 11 steps, resulting in the following equation:

$$11 \times \frac{16 \times \text{VCO\_BAND\_DIV}}{f_{PFD}} \quad (21)$$

The minimum value for VCO\_BAND\_DIV is 1 and the maximum value is 255.

### Automatic Level Calibration

Use the ALC function to choose the correct bias current in the ADF4401A VCO core. The duration required for the VCO bias voltage to settle for each step is set by the following equation:

$$\frac{\text{VCO\_ALC\_TIMEOUT} \times 1024 + \text{timeout}}{f_{PFD}} \quad (22)$$

where

VCO\_ALC\_TIMEOUT and timeout are programmed in the REG0034, REG0032, and REG0031 registers.

The calculated time must be greater than or equal to 50  $\mu\text{s}$ .

The total ALC takes 63 steps, as shown in the following equation:

$$63 \times \frac{\text{VCO\_ALC\_TIMEOUT} \times 1024 + \text{timeout}}{f_{PFD}} \quad (23)$$

The minimum value for VCO\_ALC\_TIMEOUT is 2, and the maximum value is 31.

### Calibration PLL Settling Time

The time taken for the loop to settle is inversely proportional to the low-pass filter bandwidth. The settling time is accurately modeled in the [ADIsimPLL](#) design tool.

### Calibration Lock Time, a Worked Example

Assume that  $f_{PFD} = 61.44 \text{ MHz}$ ,

$$\text{VCO\_BAND\_DIV} = \text{Ceiling}(f_{PFD}/2,400,000) = 26 \quad (24)$$

where Ceiling() rounds up to the nearest integer.

$$\text{SYNTH\_LOCK\_TIMEOUT} \times 1024 + \text{timeout} > 1228.8 \quad (25)$$

$$\text{VCO\_ALC\_TIMEOUT} \times 1024 + \text{timeout} > 3072 \quad (26)$$

There are several suitable values that meet these criteria. By considering the minimum specifications, the following values are the most suitable:

- SYNTH\_LOCK\_TIMEOUT = 2 (minimum value)
- VCO\_ALC\_TIMEOUT = 3
- Timeout = 2

Much faster lock times than those detailed in this data sheet are possible by bypassing the calibration processes. See the [AN-2005 Application Note](#) for more information.

### LOCAL OSCILLATOR (LO\_IN)

The selection of an external LO to the ADF4401A is of critical importance. Because the divider function has been replaced by a mixer, the phase noise of the external LO modulates the carrier frequency inside the PLL loop bandwidth and dominates the measured phase noise. For this reason, only the highest performance LO sources, such as voltage controlled surface acoustic wave (SAW) oscillators (VCSOs), comb generators, and dielectric resonator oscillators (DROs), are recommended.

## EXTERNAL PHASE DETECTOR

To take advantage of the ability of the architecture of offset loop PLLs to generate extremely low noise carrier frequencies, it is important to use a phase detector or PFD that can operate at high frequencies, minimizing the need for any dividers that can degrade the in band noise response.

The 1.3 GHz phase comparison frequency of the [HMC3716](#) makes it ideal for use with the IF range of the ADF4401A. The ability of such a circuit to compare both frequency and phase means no additional circuitry is required to steer the frequency to the intended output frequency.

Mixers can also be used as phase detectors, but these require additional circuitry to steer the frequency within the capture range of the mixer (the intended frequency  $\pm$  the external loop bandwidth).

## PHASE DETECTOR REFERENCE

In addition to choosing a low noise LO source and high frequency low noise phase detector, the reference frequency to the external phase detector is also of critical importance. For most applications, the external phase detector reference must have fast switching and high resolution. For this reason, direct digital synthesizers (DDSs) are highly recommended. A devices like the [AD9162](#) is suitable and cover the IF range of the ADF4401A.

## POWER SUPPLIES

To ensure optimal performance, connect a low noise regulator, such as the [ADM7150](#), to all supply pins.

## PCB DESIGN GUIDELINES

Connect all of the GND pins to as large a copper pour or plane area as possible on the top layer. Avoid breaking the ground connection between the external components and the ADF4401A.

For optimal heatsinking, use vias to connect the GND copper area to the internal ground planes of the PCB. Liberally distribute these GND vias to provide both an optimal ground connection and thermal path to the internal planes of the PCB. Pay attention to the location and density of the thermal vias.

The ADF4401A can benefit from the heatsinking afforded by vias that connect to internal GND planes at these locations due to their proximity to internal power handling components. The optimum number of thermal vias depends on the PCB design. For example, a PCB may use small via holes and therefore must employ more thermal vias than a board that uses larger holes.

For a microwave PLL and VCO synthesizer, such as the ADF4401A, care must be taken with the board stackup and layout. Do not use FR4 material because it can cause signal power loss above 3 GHz. Instead, the Rogers 4350, Rogers 4003, or Rogers 3003 dielectric material is suitable.

Care must be taken with the RF output traces to minimize discontinuities and ensure optimal signal integrity. Via placement and grounding are critical.

## OUTPUT MATCHING

The RF8P and RF8N pins can be ac-coupled to the next circuit, if desired. However, if higher output power is required, use a pull-up inductor to VRF\_OUT to increase the output power level as shown in Figure 34.

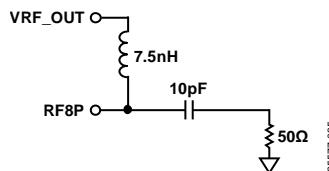



Figure 34. Optimum Output Stage

When differential outputs are not needed, terminate the unused output or combine the outputs using a balun.

For frequencies below 2 GHz, use a 100 nH inductor instead of a 7.5 nH inductor on the RF8P and RF8N pins.

The RF8P and RF8N pins are a differential circuit. Provide each output with the same (or similar) components where possible, such as a similar shunt inductor value, bypass capacitor, and termination.

## REGISTER SUMMARY

Table 8. ADF4401A Register Summary

| Reg  | Bits  | Bit 7              | Bit 6                   | Bit 5                   | Bit 4                | Bit 3              | Bit 2             | Bit 1                | Bit 0         | Default | RW  |
|------|-------|--------------------|-------------------------|-------------------------|----------------------|--------------------|-------------------|----------------------|---------------|---------|-----|
| 0x00 | [7:0] | SOFT_RESET_R       | LSB_FIRST_R             | ADDRESS_ASCENSION_R     | SDO_ACTIVE_R         | SDO_ACTIVE         | ADDRESS_ASCENSION | LSB_FIRST            | SOFT_RESET    | 0x18    | R/W |
| 0x01 | [7:0] | SINGLE_INSTRUCTION | STALLING                | MASTER_READBACK_CONTROL |                      |                    | RESERVED          |                      |               | 0x00    | R/W |
| 0x10 | [7:0] |                    |                         | BIT_INTEGER_WORD[7:0]   |                      |                    |                   |                      |               | 0x32    | R/W |
| 0x11 | [7:0] |                    |                         | BIT_INTEGER_WORD[15:8]  |                      |                    |                   |                      |               | 0x00    | R/W |
| 0x12 | [7:0] | RESERVED           | EN_AUTOCAL              | PRE_SEL                 |                      |                    | RESERVED          |                      |               | 0x40    | R/W |
| 0x14 | [7:0] |                    |                         | FRAC1WORD[7:0]          |                      |                    |                   |                      |               | 0x00    | R/W |
| 0x15 | [7:0] |                    |                         | FRAC1WORD[15:8]         |                      |                    |                   |                      |               | 0x00    | R/W |
| 0x16 | [7:0] |                    |                         | FRAC1WORD[23:16]        |                      |                    |                   |                      |               | 0x00    | R/W |
| 0x17 | [7:0] |                    |                         | FRAC2WORD[6:0]          |                      |                    |                   |                      | FRAC1WORD[24] | 0x00    | R/W |
| 0x18 | [7:0] | RESERVED           |                         |                         | FRAC2WORD[13:7]      |                    |                   |                      |               | 0x00    | R/W |
| 0x19 | [7:0] |                    |                         | MOD2WORD[7:0]           |                      |                    |                   |                      |               | 0xE8    | R/W |
| 0x1A | [7:0] | RESERVED           |                         |                         | MOD2WORD[13:8]       |                    |                   |                      |               | 0x03    | R/W |
| 0x1E | [7:0] |                    | CP_CURRENT              |                         | PD_POL               | PD                 | RESERVED          | CNTR_RESET           |               | 0x48    | R/W |
| 0x1F | [7:0] | RESERVED           |                         |                         |                      | R_WORD             |                   |                      |               | 0x01    | R/W |
| 0x20 | [7:0] |                    | MUXOUT                  |                         | MUXOUT_EN            | LEV_SEL            | RESERVED          |                      |               | 0x14    | R/W |
| 0x22 | [7:0] | RESERVED           | REFIN_MODE              | RESERVED                | RDIV2                |                    | RESERVED          |                      |               | 0x00    | R/W |
| 0x24 | [7:0] | FB_SEL             |                         | DIV_SEL                 |                      |                    | RESERVED          |                      |               | 0x80    | R/W |
| 0x25 | [7:0] | RESERVED           | RF_DIVSEL_DB            |                         | RESERVED             | RF_EN              | RF_OUT_POWER      |                      |               | 0x07    | R/W |
| 0x27 | [7:0] | LD_BIAS            | LDP                     |                         |                      | RESERVED           |                   |                      |               | 0xC5    | R/W |
| 0x28 | [7:0] | DOUBLE_BUFF        |                         | RESERVED                |                      | LD_COUNT           | LOL_EN            |                      |               | 0x03    | R/W |
| 0x2B | [7:0] | RESERVED           | LSB_P1                  | VAR_MOD_EN              | RESERVED             | SD_LOAD_ENB        | RESERVED          | SD_EN_FRAC0          |               | 0x01    | R/W |
| 0x2C | [7:0] | RESERVED           | ALC_RECT_SELECT_VCO1    | ALC_REF_DAC_LO_VCO1     |                      | VTUNE_CALSET_EN    | DISABLE_ALC       |                      |               | 0x44    | R/W |
| 0x2D | [7:0] | RESERVED           | ALC_RECT_SELECT_VCO2    | ALC_REF_DAC_LO_VCO2     | ALC_REF_DAC_NOM_VCO2 |                    |                   |                      |               | 0x11    | R/W |
| 0x2E | [7:0] | RESERVED           | ALC_RECT_SELECT_VCO3    | ALC_REF_DAC_LO_VCO3     | ALC_REF_DAC_NOM_VCO3 |                    |                   |                      |               | 0x12    | R/W |
| 0x2F | [7:0] | RESERVED           | ALC_RECT_SELECT_VCO4    | ALC_REF_DAC_L0_VCO4     | ALC_REF_DAC_NOM_VCO4 |                    |                   |                      |               | 0x94    | R/W |
| 0x30 | [7:0] |                    | VCO_BAND_DIV            |                         |                      |                    |                   |                      |               | 0x3F    | R/W |
| 0x31 | [7:0] |                    | TIMEOUT[7:0]            |                         |                      |                    |                   |                      |               | 0xA7    | R/W |
| 0x32 | [7:0] | ADC_MUX_SEL        | RESERVED                | ADC_FAST_CONV           | ADC_CTS_CONV         | ADC_CONVERSION     | ADC_ENABLE        |                      | TIMEOUT[9:8]  | 0x04    | R/W |
| 0x33 | [7:0] | RESERVED           |                         |                         |                      | SYNTH_LOCK_TIMEOUT |                   |                      |               | 0x0C    | R/W |
| 0x34 | [7:0] | VCO_FSM_TEST_MODES |                         |                         |                      | VCO_ALC_TIMEOUT    |                   |                      |               | 0x9E    | R/W |
| 0x35 | [7:0] |                    | ADC_CLK_DIVIDER         |                         |                      |                    |                   |                      |               | 0x4C    | R/W |
| 0x36 | [7:0] |                    | ICP_ADJUST_OFFSET       |                         |                      |                    |                   |                      |               | 0x30    | R/W |
| 0x37 | [7:0] |                    | SI_BAND_SEL             |                         |                      |                    |                   |                      |               | 0x00    | R/W |
| 0x38 | [7:0] | SI_VCO_SEL         |                         |                         | SI_VCO_BIAS_CODE     |                    |                   |                      |               | 0x00    | R/W |
| 0x39 | [7:0] | RESERVED           | VCO_FSM_TEST_MUX_SEL    |                         | SI_VTUNE_CAL_SET     |                    |                   |                      |               | 0x07    | R/W |
| 0x3A | [7:0] |                    | ADC_OFFSET              |                         |                      |                    |                   |                      |               | 0x55    | R/W |
| 0x3E | [7:0] | RESERVED           |                         |                         | CP_TMODE             | RESERVED           |                   |                      |               | 0x0C    | R/W |
| 0x3F | [7:0] |                    | RESERVED                |                         |                      |                    |                   |                      |               | 0x80    | R/W |
| 0x40 | [7:0] |                    | RESERVED                |                         |                      |                    |                   |                      |               | 0x50    | R/W |
| 0x41 | [7:0] |                    | RESERVED                |                         |                      |                    |                   |                      |               | 0x28    | R/W |
| 0x47 | [7:0] |                    | RESERVED                |                         |                      |                    |                   |                      |               | 0xC0    | R/W |
| 0x52 | [7:0] |                    | RESERVED                |                         |                      |                    |                   |                      |               | 0xF4    | R/W |
| 0x6E | [7:0] |                    | VCO_DATA_READBACK[7:0]  |                         |                      |                    |                   |                      |               | 0x00    | R   |
| 0x6F | [7:0] |                    | VCO_DATA_READBACK[15:8] |                         |                      |                    |                   |                      |               | 0x00    | R   |
| 0x72 | [7:0] | RESERVED           | AUX_FREQ_SEL            | POUT_AUX                | PDB_AUX              |                    | RESERVED          |                      |               | 0x32    | R/W |
| 0x73 | [7:0] |                    | RESERVED                |                         |                      | ADC_CLK_DISABLE    | PD_NDIV           | LD_DIV               |               | 0x00    | R/W |
| 0x7C | [7:0] |                    | RESERVED                |                         |                      |                    |                   | LOCK_DETECT_READBACK |               | 0x00    | R   |

## REGISTER DETAILS

Address: 0x00, Default: 0x18, Name: REG0000

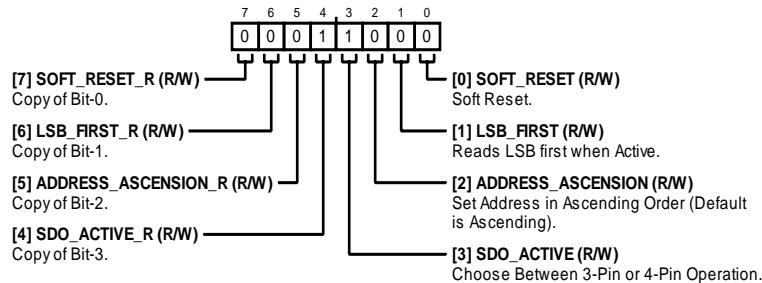



Table 9. Bit Descriptions for REG0000

| Bit(s) | Bit Name            | Description                                                                                                                     | Default | Access |
|--------|---------------------|---------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| 7      | SOFT_RESET_R        | Copy of Bit 0.                                                                                                                  | 0x0     | R/W    |
| 6      | LSB_FIRST_R         | Copy of Bit 1.                                                                                                                  | 0x0     | R/W    |
| 5      | ADDRESS_ASCENSION_R | Copy of Bit 2.                                                                                                                  | 0x0     | R/W    |
| 4      | SDO_ACTIVE_R        | Copy of Bit 3.                                                                                                                  | 0x1     | R/W    |
| 3      | SDO_ACTIVE          | Choose between 3-pin or 4-pin operation.<br>0: 3-pin.<br>1: 4-pin. Enables the SDIO pin and the SDIO pin becomes an input only. | 0x1     | R/W    |
| 2      | ADDRESS_ASCENSION   | Set Address in Ascending Order (Default Is Ascending).<br>0: descending.<br>1: ascending.                                       | 0x0     | R/W    |
| 1      | LSB_FIRST           | Reads LSB First when Active.                                                                                                    | 0x0     | R/W    |
| 0      | SOFT_RESET          | Soft Reset.<br>0: normal operation.<br>1: soft reset.                                                                           | 0x0     | R/W    |

Address: 0x01, Default: 0x00, Name: REG0001

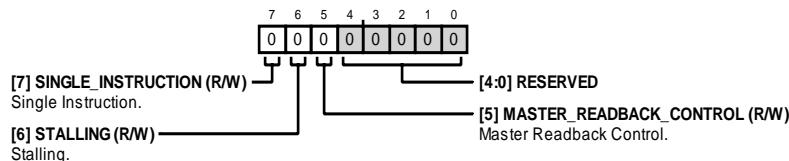



Table 10. Bit Descriptions for REG0001

| Bit(s) | Bit Name                | Description                                                                                | Default | Access |
|--------|-------------------------|--------------------------------------------------------------------------------------------|---------|--------|
| 7      | SINGLE_INSTRUCTION      | Single Instruction. SPI stream mode is disabled if the SINGLE_INSTRUCTION bit is set to 1. | 0x0     | R/W    |
| 6      | STALLING                | Stalling.                                                                                  | 0x0     | R/W    |
| 5      | MASTER_READBACK_CONTROL | Master Readback Control.                                                                   | 0x0     | R/W    |
| [4:0]  | RESERVED                | Reserved.                                                                                  | 0x0     | R      |

Address: 0x10, Default: 0x32, Name: REG0010



Table 11. Bit Descriptions for REG0010

| Bit(s) | Bit Name              | Description                                                                                                                                                                     | Default | Access |
|--------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| [7:0]  | BIT_INTEGER_WORD[7:0] | 16-Bit Integer Word. Sets the integer value of N (for the internal PLL). Updates to the PLL N counter, including FRAC1, FRAC2, and MOD2, are double buffered by this bit field. | 0x32    | R/W    |

Address: 0x11, Default: 0x00, Name: REG0011

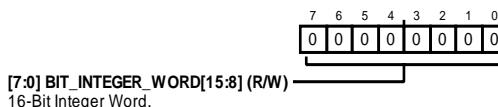



Table 12. Bit Descriptions for REG0011

| Bit(s) | Bit Name               | Description                                       | Default | Access |
|--------|------------------------|---------------------------------------------------|---------|--------|
| [7:0]  | BIT_INTEGER_WORD[15:8] | 16-Bit Integer Word. Sets the integer value of N. | 0x0     | R/W    |

Address: 0x12, Default: 0x40, Name: REG0012

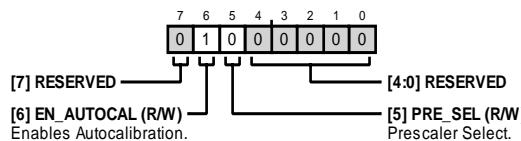



Table 13. Bit Descriptions for REG0012

| Bit(s) | Bit Name   | Description                                                                                                                                                                                                                                                                                                                                | Default | Access |
|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| 7      | RESERVED   | Reserved.                                                                                                                                                                                                                                                                                                                                  | 0x0     | R      |
| 6      | EN_AUTOCAL | Enables Autocalibration.<br>0: VCO autocalibration disabled.<br>1: VCO autocalibration enabled.                                                                                                                                                                                                                                            | 0x1     | R/W    |
| 5      | PRE_SEL    | Prescaler Select. The dual modulus prescaler for the calibration PLL is set by the PRE_SEL bit. The prescaler, at the input to the N divider, divides down the VCO signal so the N divider can handle it. The prescaler setting affects the RF frequency and the minimum and maximum INT values.<br>0: 4/5 prescaler.<br>1: 8/9 prescaler. | 0x0     | R/W    |
| [4:0]  | RESERVED   | Reserved.                                                                                                                                                                                                                                                                                                                                  | 0x0     | R      |

Address: 0x14, Default: 0x00, Name: REG0014

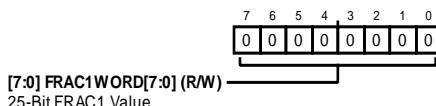



Table 14. Bit Descriptions for REG0014

| Bit(s) | Bit Name       | Description                               | Default | Access |
|--------|----------------|-------------------------------------------|---------|--------|
| [7:0]  | FRAC1WORD[7:0] | 25-Bit FRAC1 Value. Sets the FRAC1 value. | 0x0     | R/W    |

Address: 0x15, Default: 0x00, Name: REG0015

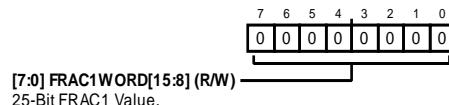



Table 15. Bit Descriptions for REG0015

| Bit(s) | Bit Name        | Description                               | Default | Access |
|--------|-----------------|-------------------------------------------|---------|--------|
| [7:0]  | FRAC1WORD[15:8] | 25-Bit FRAC1 Value. Sets the FRAC1 value. | 0x0     | R/W    |

Address: 0x16, Default: 0x00, Name: REG0016

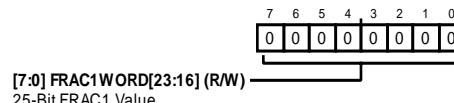



Table 16. Bit Descriptions for REG0016

| Bit(s) | Bit Name         | Description                               | Default | Access |
|--------|------------------|-------------------------------------------|---------|--------|
| [7:0]  | FRAC1WORD[23:16] | 25-Bit FRAC1 Value. Sets the FRAC1 value. | 0x0     | R/W    |

Address: 0x17, Default: 0x00, Name: REG0017

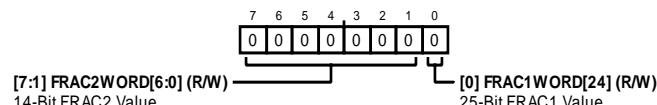



Table 17. Bit Descriptions for REG0017

| Bit(s) | Bit Name       | Description                               | Default | Access |
|--------|----------------|-------------------------------------------|---------|--------|
| [7:1]  | FRAC2WORD[6:0] | 14-Bit FRAC2 Value. Sets the FRAC2 value. | 0x0     | R/W    |
| 0      | FRAC1WORD[24]  | 25-Bit FRAC1 Value. Sets the FRAC1 value. | 0x0     | R/W    |

Address: 0x18, Default: 0x00, Name: REG0018

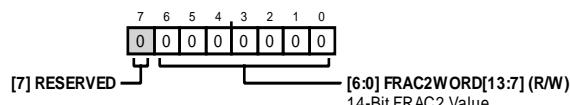



Table 18. Bit Descriptions for REG0018

| Bit(s) | Bit Name        | Description                               | Default | Access |
|--------|-----------------|-------------------------------------------|---------|--------|
| 7      | RESERVED        | Reserved.                                 | 0x0     | R      |
| [6:0]  | FRAC2WORD[13:7] | 14-Bit FRAC2 Value. Sets the FRAC2 value. | 0x0     | R/W    |

Address: 0x19, Default: 0xE8, Name: REG0019

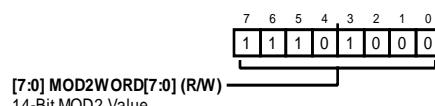



Table 19. Bit Descriptions for REG0019

| Bit(s) | Bit Name      | Description                             | Default | Access |
|--------|---------------|-----------------------------------------|---------|--------|
| [7:0]  | MOD2WORD[7:0] | 14-Bit MOD2 Value. Sets the MOD2 value. | 0xE8    | R/W    |

Address: 0x1A, Default: 0x03, Name: REG001A

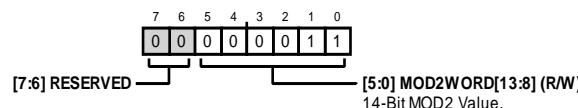



Table 20. Bit Descriptions for REG001A

| Bit(s) | Bit Name       | Description                             | Default | Access |
|--------|----------------|-----------------------------------------|---------|--------|
| [7:6]  | RESERVED       | Reserved.                               | 0x0     | R      |
| [5:0]  | MOD2WORD[13:8] | 14-Bit MOD2 Value. Sets the MOD2 value. | 0x3     | R/W    |

Address: 0x1E, Default: 0x48, Name: REG001E

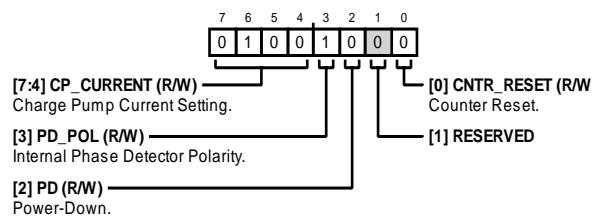



Table 21. Bit Descriptions for REG001E

| Bit(s) | Bit Name   | Description                                                                                                                                                                                                                                                                                                                                                                                                                    | Default | Access |
|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| [7:4]  | CP_CURRENT | Charge Pump Current Setting. Sets the charge pump current. Set the CP_CURRENT bits to the charge pump current that the loop filter is designed for.<br>0: 0.35 mA.<br>1: 0.70 mA.<br>10: 1.05 mA.<br>11: 1.4 mA.<br>100: 1.75 mA.<br>101: 2.1 mA.<br>110: 2.45 mA.<br>111: 2.8 mA.<br>1000: 3.15 mA.<br>1001: 3.5 mA.<br>1010: 3.85 mA.<br>1011: 4.2 mA.<br>1100: 4.55 mA.<br>1101: 4.9 mA.<br>1110: 5.25 mA.<br>1111: 5.6 mA. | 0x4     | R/W    |
| 3      | PD_POL     | Internal Phase Detector Polarity. If using a noninverting loop filter, set phase detector polarity to positive. If using an inverting loop filter, set phase detector polarity to negative.<br>0: negative phase detector polarity.<br>1: positive phase detector polarity.                                                                                                                                                    | 0x1     | R/W    |
| 2      | PD         | Power-Down. Setting to 1 powers down all internal PLL blocks of the VCO/PLL. The VCO and multipliers remain powered up. The registers do not lose their values. After bringing the ADF4401A back to calibration mode (setting to 0) a write to REG0010 is required to relock the calibration loop.<br>0: calibration mode.<br>1: translation loop mode.                                                                        | 0x0     | R/W    |
| 1      | RESERVED   | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                      | 0x0     | R      |
| 0      | CNTR_RESET | Counter Reset. Setting to 1 holds the N divider and R counter in reset. There are no signals entering the PFD.<br>0: normal operation.<br>1: counter reset.                                                                                                                                                                                                                                                                    | 0x0     | R/W    |

Address: 0x1F, Default: 0x01, Name: REG001F

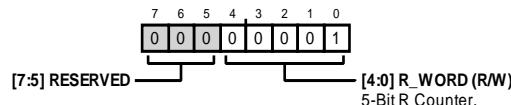



Table 22. Bit Descriptions for REG001F

| Bit(s) | Bit Name | Description      | Default | Access |
|--------|----------|------------------|---------|--------|
| [7:5]  | RESERVED | Reserved.        | 0x0     | R      |
| [4:0]  | R_WORD   | 5-Bit R Counter. | 0x1     | R/W    |

Address: 0x20, Default: 0x14, Name: REG0020

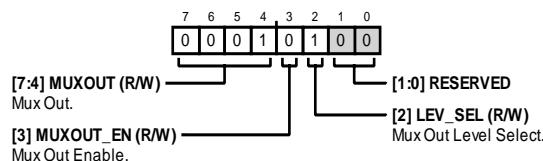



Table 23. Bit Descriptions for REG0020

| Bit(s) | Bit Name  | Description                                                                                                                                                                                                                                                                                                                                                                                                                 | Default | Access |
|--------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| [7:4]  | MUXOUT    | Mux Out. Is used to set the mux out signal when MUXOUT_EN = 1.<br>0: tristate, high impedance output (only works when MUXOUT_EN = 0).<br>1: digital lock detect for calibration PLL.<br>10: charge pump up.<br>11: charge pump down.<br>100: R divider output/2.<br>101: N divider output/2.<br>110: VCO test modes.<br>111: reserved.<br>1000: high.<br>1001: VCO calibration R band/2.<br>1010: VCO calibration N band/2. | 0x1     | R/W    |
| 3      | MUXOUT_EN | Mux Out Enable. Set to 0 if using 4-wire SPI.<br>0: MUXOUT pin is configured as serial data output for 4-wire SPI. Mux out functionality is disabled.<br>1: MUXOUT pin is configured for mux out functionality.                                                                                                                                                                                                             | 0x0     | R/W    |
| 2      | LEV_SEL   | Mux Out Level Select. Select the voltage level of the logic at the mux out.<br>0: 1.8 V logic.<br>1: 3.3 V logic.                                                                                                                                                                                                                                                                                                           | 0x1     | R/W    |
| [1:0]  | RESERVED  | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                   | 0x0     | R      |

Address: 0x22, Default: 0x00, Name: REG0022

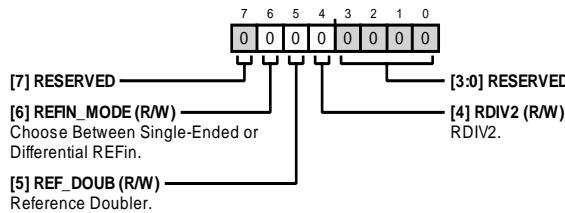



Table 24. Bit Descriptions for REG0022

| Bit(s) | Bit Name   | Description                                                                                                                                                         | Default | Access |
|--------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| 7      | RESERVED   | Reserved.                                                                                                                                                           | 0x0     | R      |
| 6      | REFIN_MODE | Choose Between Single-Ended or Differential REFin.<br>0: single-ended REFin.<br>1: differential REFin.                                                              | 0x0     | R/W    |
| 5      | REF_DOUB   | Reserved.                                                                                                                                                           | 0x0     | R/W    |
| 4      | RDIV2      | RDIV2. Controls the reference divide by 2 clock. This feature can be used to provide a 50% duty cycle signal to the PFD.<br>0: RDIV2 disabled.<br>1: RDIV2 enabled. | 0x0     | R/W    |
| [3:0]  | RESERVED   | Reserved.                                                                                                                                                           | 0x0     | R      |

Address: 0x24, Default: 0x80, Name: REG0024

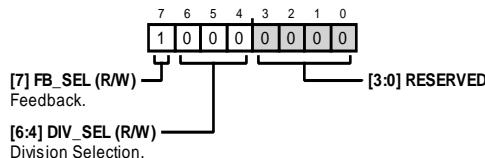



Table 25. Bit Descriptions for REG0024

| Bit(s) | Bit Name | Description                                                                                                                                                      | Default | Access |
|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| 7      | FB_SEL   | Feedback.<br>0: divider feedback to N counter.<br>1: fundamental feedback to N counter.                                                                          | 0x1     | R/W    |
| [6:4]  | DIV_SEL  | Division Selection.<br>0: divide 1.<br>1: divide 2.<br>10: divide 4.<br>11: divide 8.<br>100: divide 16.<br>101: divide 32.<br>110: divide 64.<br>111: reserved. | 0x0     | R/W    |
| [3:0]  | RESERVED | Reserved.                                                                                                                                                        | 0x0     | R      |

Address: 0x25, Default: 0x07, Name: REG0025

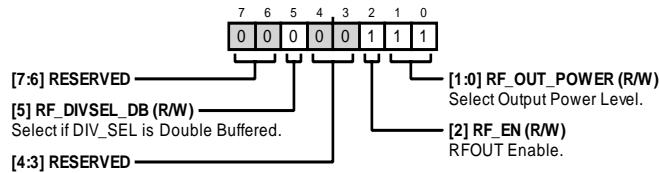



Table 26. Bit Descriptions for REG0025

| Bit(s) | Bit Name     | Description                                                                        | Default | Access |
|--------|--------------|------------------------------------------------------------------------------------|---------|--------|
| [7:6]  | RESERVED     | Reserved.                                                                          | 0x0     | R      |
| 5      | RF_DIVSEL_DB | Select if DIV_SEL is Double Buffered.                                              | 0x0     | R/W    |
| [4:3]  | RESERVED     | Reserved.                                                                          | 0x0     | R/W    |
| 2      | RF_EN        | RFOUT Enable.<br>0: RFOUT disabled.<br>1: RFOUT enabled.                           | 0x1     | R/W    |
| [1:0]  | RF_OUT_POWER | Select Output Power Level.<br>0: -4 dBm.<br>1: -1 dBm.<br>10: 2 dBm.<br>11: 5 dBm. | 0x3     | R/W    |

Address: 0x27, Default: 0xC5, Name: REG0027

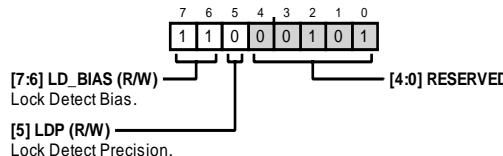



Table 27. Bit Descriptions for REG0027

| Bit(s) | Bit Name | Description                                                                                                                                                                                                                                                              | Default | Access |
|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| [7:6]  | LD_BIAS  | Lock Detect Bias. The lock detector window size is set by adjusting the lock detector bias in conjunction with the lock detector precision.<br>0: 5 ns lock detect delay if LDP = 0.<br>1: 6 ns.<br>10: 8 ns.<br>11: 12 ns lock detect delay (for large values of bleed) | 0x3     | R/W    |
| 5      | LDP      | Lock Detect Precision. Controls the sensitivity of the digital lock detector, depending on INT or FRAC operation selected.<br>0: FRAC mode (5 ns).<br>1: INT mode (2.4 ns).                                                                                              | 0x0     | R/W    |
| [4:0]  | RESERVED | Reserved.                                                                                                                                                                                                                                                                | 0x5     | R/W    |

Address: 0x28, Default: 0x03, Name: REG0028

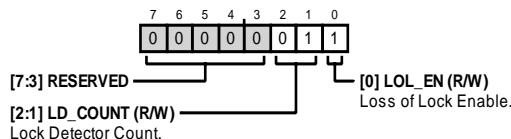



Table 28. Bit Descriptions for REG0028

| Bit(s) | Bit Name | Description                                                                                                                                                                                                                                                     | Default | Access |
|--------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| [7:3]  | RESERVED | Reserved.                                                                                                                                                                                                                                                       | 0x0     | R      |
| [2:1]  | LD_COUNT | Lock Detector Count. Initial value of the lock detector. This field sets the number of counts of PFD within lock window before asserting digital lock detect high.<br>0: 1024 cycles.<br>1: 2048 cycles.<br>10: 4096 cycles.<br>11: 8192 cycles.                | 0x1     | R/W    |
| 0      | LOL_EN   | Loss of Lock Enable. When loss of lock is enabled, if the digital lock detect is asserted, and the reference signal is removed, digital lock detect goes low. It is recommended to set to 1 to enable loss of lock.<br>0: disabled.<br>1: loss of lock enabled. | 0x1     | R/W    |

Address: 0x2B, Default: 0x01, Name: REG002B

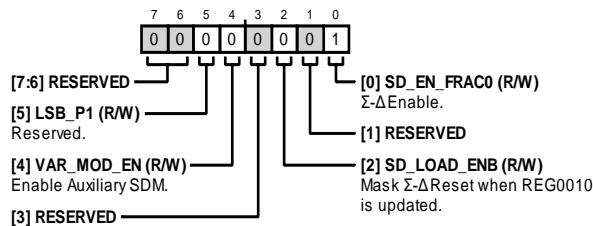



Table 29. Bit Descriptions for REG002B

| Bit(s) | Bit Name    | Description                                                                                                                                                                     | Default | Access |
|--------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| [7:6]  | RESERVED    | Reserved.                                                                                                                                                                       | 0x0     | R      |
| 5      | LSB_P1      | Reserved.                                                                                                                                                                       | 0x0     | R/W    |
| 4      | VAR_MOD_EN  | Enable Auxiliary SDM. Set to 0 for normal operation.                                                                                                                            | 0x0     | R/W    |
| 3      | RESERVED    | Reserved.                                                                                                                                                                       | 0x0     | R      |
| 2      | SD_LOAD_ENB | Mask Σ-Δ Reset when REG0010 is updated.                                                                                                                                         | 0x0     | R/W    |
| 1      | RESERVED    | Reserved.                                                                                                                                                                       | 0x0     | R      |
| 0      | SD_EN_FRAC0 | Σ-Δ Enable. Set to 1 when in INT mode (when FRAC1 = FRAC2 = 0), and set to 0 when in FRAC mode.<br>0: Σ-Δ enabled (for fractional mode).<br>1: Σ-Δ disabled (for integer mode). | 0x1     | R/W    |

Address: 0x2C, Default: 0x44, Name: REG002C

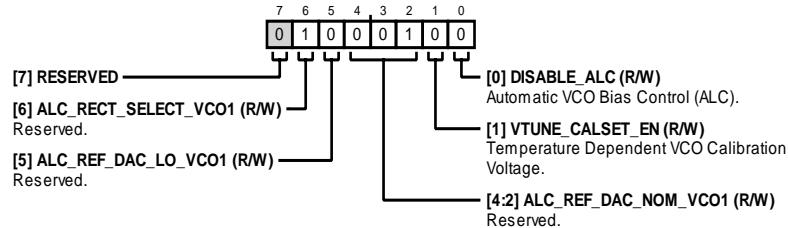



Table 30. Bit Descriptions for REG002C

| Bit(s) | Bit Name             | Description                                                                                                                                                             | Default | Access |
|--------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| 7      | RESERVED             | Reserved.                                                                                                                                                               | 0x0     | R      |
| 6      | ALC_RECT_SELECT_VCO1 | Reserved.                                                                                                                                                               | 0x1     | R/W    |
| 5      | ALC_REF_DAC_LO_VCO1  | Reserved.                                                                                                                                                               | 0x0     | R/W    |
| [4:2]  | ALC_REF_DAC_NOM_VCO1 | Reserved.                                                                                                                                                               | 0x1     | R/W    |
| 1      | VTUNE_CALSET_EN      | Temperature Dependent VCO Calibration Voltage.<br>0: disable temperature dependent VCO calibration voltage.<br>1: enable temperature dependent VCO calibration voltage. | 0x0     | R/W    |
| 0      | DISABLE_ALC          | Automatic VCO Bias Control (ALC).<br>0: ALC enabled.<br>1: ALC disabled.                                                                                                | 0x0     | R/W    |

Address: 0x2D, Default: 0x11, Name: REG002D

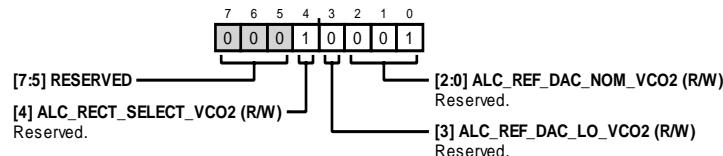



Table 31. Bit Descriptions for REG002D

| Bit(s) | Bit Name             | Description | Default | Access |
|--------|----------------------|-------------|---------|--------|
| [7:5]  | RESERVED             | Reserved.   | 0x0     | R      |
| 4      | ALC_RECT_SELECT_VCO2 | Reserved.   | 0x1     | R/W    |
| 3      | ALC_REF_DAC_LO_VCO2  | Reserved.   | 0x0     | R/W    |
| [2:0]  | ALC_REF_DAC_NOM_VCO2 | Reserved.   | 0x1     | R/W    |

Address: 0x2E, Default: 0x10, Name: REG002E

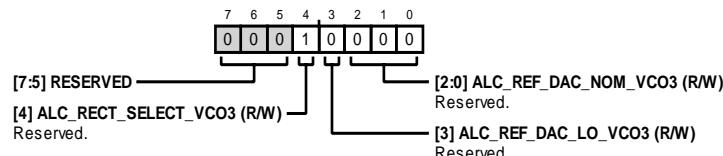



Table 32. Bit Descriptions for REG002E

| Bit(s) | Bit Name             | Description | Default | Access |
|--------|----------------------|-------------|---------|--------|
| [7:5]  | RESERVED             | Reserved.   | 0x0     | R      |
| 4      | ALC_RECT_SELECT_VCO3 | Reserved.   | 0x1     | R/W    |
| 3      | ALC_REF_DAC_LO_VCO3  | Reserved.   | 0x0     | R/W    |
| [2:0]  | ALC_REF_DAC_NOM_VCO3 | Reserved.   | 0x0     | R/W    |

Address: 0x2F, Default: 0x92, Name: REG002F

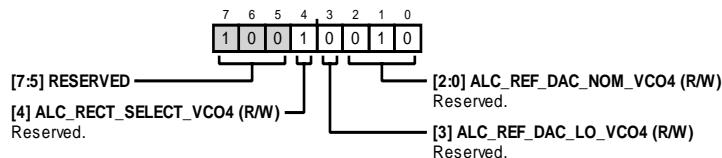



Table 33. Bit Descriptions for REG002F

| Bit(s) | Bit Name             | Description                                | Default | Access |
|--------|----------------------|--------------------------------------------|---------|--------|
| [7:5]  | RESERVED             | Reserved. Set to 0x4 for normal operation. | 0x4     | R/W    |
| 4      | ALC_RECT_SELECT_VCO4 | Reserved.                                  | 0x1     | R/W    |
| 3      | ALC_REF_DAC_LO_VCO4  | Reserved.                                  | 0x0     | R/W    |
| [2:0]  | ALC_REF_DAC_NOM_VCO4 | Reserved.                                  | 0x2     | R/W    |

Address: 0x30, Default: 0x3F, Name: REG0030

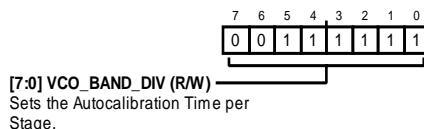



Table 34. Bit Descriptions for REG0030

| Bit(s) | Bit Name     | Description                                                                                | Default | Access |
|--------|--------------|--------------------------------------------------------------------------------------------|---------|--------|
| [7:0]  | VCO_BAND_DIV | Sets the Autocalibration Time per Stage. See the VCO Calibration Time section for details. | 0x3F    | R/W    |

Address: 0x31, Default: 0xA7, Name: REG0031

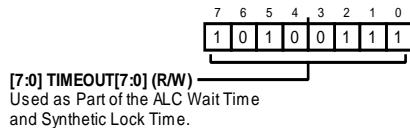



Table 35. Bit Descriptions for REG0031

| Bit(s) | Bit Name     | Description                                                                                                  | Default | Access |
|--------|--------------|--------------------------------------------------------------------------------------------------------------|---------|--------|
| [7:0]  | TIMEOUT[7:0] | Used as Part of the ALC Wait Time and Synthetic Lock Time. See the VCO Calibration Time section for details. | 0xA7    | R/W    |

Address: 0x32, Default: 0x04, Name: REG0032

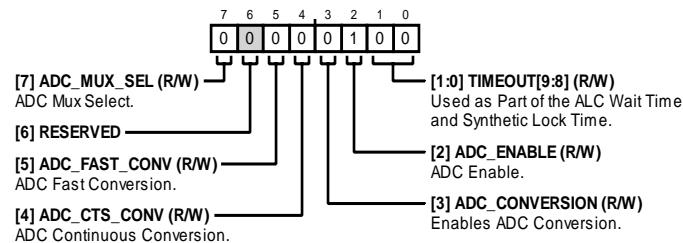



Table 36. Bit Descriptions for REG0032

| Bit(s) | Bit Name    | Description                                                                                                                                  | Default | Access |
|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| 7      | ADC_MUX_SEL | ADC Mux Select.<br>0: proportional to absolute temperature (PTAT) voltage muxed to ADC input.<br>1: scaled VTUNE voltage muxed to ADC input. | 0x0     | R/W    |
| 6      | RESERVED    | Reserved.                                                                                                                                    | 0x0     | R      |

| Bit(s) | Bit Name       | Description                                                                                                       | Default | Access |
|--------|----------------|-------------------------------------------------------------------------------------------------------------------|---------|--------|
| 5      | ADC_FAST_CONV  | ADC Fast Conversion.<br>0: disabled.<br>1: enabled.                                                               | 0x0     | R/W    |
| 4      | ADC_CTS_CONV   | ADC Continuous Conversion.<br>0: disabled.<br>1: enabled.                                                         | 0x0     | R/W    |
| 3      | ADC_CONVERSION | Enables ADC Conversion.<br>0: no ADC conversion.<br>1: perform ADC conversion on REG0000 write if ADC is enabled. | 0x0     | R/W    |
| 2      | ADC_ENABLE     | ADC Enable.<br>0: disabled.<br>1: enabled.                                                                        | 0x1     | R/W    |
| [1:0]  | TIMEOUT[9:8]   | Used as Part of the ALC Wait Time and Synthetic Lock Time. See the VCO Calibration Time section for details.      | 0x0     | R/W    |

Address: 0x33, Default: 0x0C, Name: REG0033

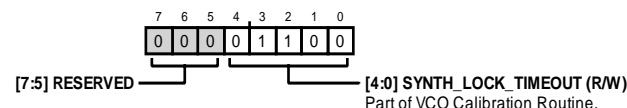



Table 37. Bit Descriptions for REG0033

| Bit(s) | Bit Name           | Description                                                                        | Default | Access |
|--------|--------------------|------------------------------------------------------------------------------------|---------|--------|
| [7:5]  | RESERVED           | Reserved.                                                                          | 0x0     | R      |
| [4:0]  | SYNTH_LOCK_TIMEOUT | Part of VCO Calibration Routine. See the VCO Calibration Time section for details. | 0xC     | R/W    |

Address: 0x34, Default: 0x9E, Name: REG0034

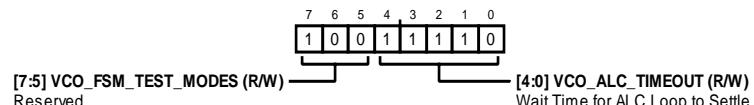



Table 38. Bit Descriptions for REG0034

| Bit(s) | Bit Name           | Description                                                                         | Default | Access |
|--------|--------------------|-------------------------------------------------------------------------------------|---------|--------|
| [7:5]  | VCO_FSM_TEST_MODES | Reserved.                                                                           | 0x4     | R/W    |
| [4:0]  | VCO_ALC_TIMEOUT    | Wait Time for ALC Loop to Settle. See the VCO Calibration Time section for details. | 0x1E    | R/W    |

Address: 0x35, Default: 0x4C, Name: REG0035

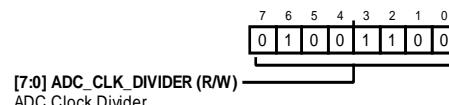



Table 39. Bit Descriptions for REG0035

| Bit(s) | Bit Name        | Description                                                                                                                                                   | Default | Access |
|--------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| [7:0]  | ADC_CLK_DIVIDER | ADC Clock Divider. ADC clock = $f_{PFD}/((ADC\_CLK\_DIVIDER \times 4) + 2)$ . Target 100 kHz for ADC clock Refer to <a href="#">AN-2005</a> for more details. | 0x4C    | R/W    |

Address: 0x36, Default: 0x30, Name: REG0036

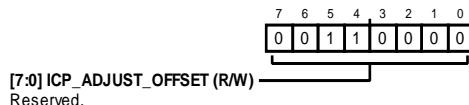



Table 40. Bit Descriptions for REG0036

| Bit(s) | Bit Name          | Description | Default | Access |
|--------|-------------------|-------------|---------|--------|
| [7:0]  | ICP_ADJUST_OFFSET | Reserved.   | 0x30    | R/W    |

Address: 0x37, Default: 0x00, Name: REG0037

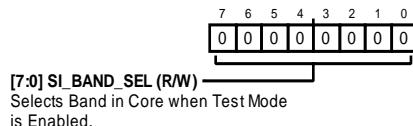



Table 41. Bit Descriptions for REG0037

| Bit(s) | Bit Name    | Description                                     | Default | Access |
|--------|-------------|-------------------------------------------------|---------|--------|
| [7:0]  | SI_BAND_SEL | Selects Band in Core when Test Mode is Enabled. | 0x0     | R/W    |

Address: 0x38, Default: 0x00, Name: REG0038

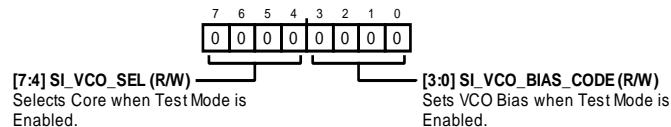



Table 42. Bit Descriptions for REG0038

| Bit(s) | Bit Name         | Description                                                                                                                                | Default | Access |
|--------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| [7:4]  | SI_VCO_SEL       | Selects Core when Test Mode is Enabled.<br>0: all cores off.<br>1: VCO Core D.<br>10: VCO Core C.<br>100: VCO Core B.<br>1000: VCO Core A. | 0x0     | R/W    |
| [3:0]  | SI_VCO_BIAS_CODE | Sets VCO Bias when Test Mode is Enabled.<br>0000: maximum VCO bias (approximately 3.2 V).<br>1111: minimum VCO bias (approximately 1.8 V). | 0x0     | R/W    |

Address: 0x39, Default: 0x07, Name: REG0039

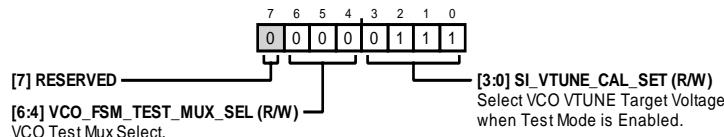



Table 43. Bit Descriptions for REG0039

| Bit(s) | Bit Name             | Description                                                                                           | Default | Access |
|--------|----------------------|-------------------------------------------------------------------------------------------------------|---------|--------|
| 7      | RESERVED             | Reserved.                                                                                             | 0x0     | R      |
| [6:4]  | VCO_FSM_TEST_MUX_SEL | VCO Test Mux Select.<br>0: busy.<br>1: N band.<br>10: R band.<br>11: reserved.<br>100: timeout clock. | 0x0     | R/W    |

| Bit(s) | Bit Name         | Description                                                                                                                                                                                                                                                                                                                  | Default | Access |
|--------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
|        |                  | 101: bias minimum.<br>110: ADC busy.<br>111: logic low.                                                                                                                                                                                                                                                                      |         |        |
| [3:0]  | SI_VTUNE_CAL_SET | Select VCO VTUNE Target Voltage when Test Mode is Enabled.<br>0: 0.58 V.<br>1: 0.73 V.<br>10: 0.88 V.<br>11: 1.03 V.<br>100: 1.18 V.<br>101: 1.33 V.<br>110: 1.48 V.<br>111: 1.63 V.<br>1000: 1.78 V.<br>1001: 1.93 V.<br>1010: 2.08 V.<br>1011: 2.23 V.<br>1100: 2.38 V.<br>1101: 2.53 V.<br>1110: 2.68 V.<br>1111: 2.83 V. | 0x7     | R/W    |

Address: 0x3A, Default: 0x55, Name: REG003A

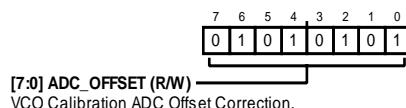



Table 44. Bit Descriptions for REG003A

| Bit(s) | Bit Name   | Description                            | Default | Access |
|--------|------------|----------------------------------------|---------|--------|
| [7:0]  | ADC_OFFSET | VCO Calibration ADC Offset Correction. | 0x55    | R/W    |

Address: 0x3E, Default: 0x0C, Name: REG003E

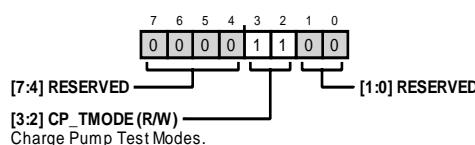



Table 45. Bit Descriptions for REG003E

| Bit(s) | Bit Name | Description                                                      | Default | Access |
|--------|----------|------------------------------------------------------------------|---------|--------|
| [7:4]  | RESERVED | Reserved.                                                        | 0x0     | R      |
| [3:2]  | CP_TMODE | Charge Pump Test Modes<br>0: CP tristate<br>11: normal operation | 0x3     | R/W    |
| [1:0]  | RESERVED | Reserved.                                                        | 0x0     | R      |

Address: 0x3F, Default: 0x80, Name: REG003F

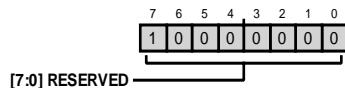



Table 46. Bit Descriptions for REG003F

| Bit(s) | Bit Name | Description | Default | Access |
|--------|----------|-------------|---------|--------|
| [7:0]  | RESERVED | Reserved.   | 0x80    | R/W    |

Address: 0x40, Default: 0x50, Name: REG0040

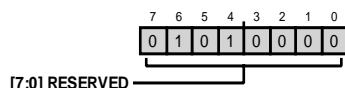



Table 47. Bit Descriptions for REG0040

| Bit(s) | Bit Name | Description | Default | Access |
|--------|----------|-------------|---------|--------|
| [7:5]  | RESERVED | Reserved.   | 0x50    | R      |

Address: 0x41, Default: 0x28, Name: REG0041

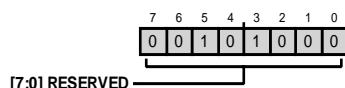



Table 48. Bit Descriptions for REG0041

| Bit(s) | Bit Name | Description | Default | Access |
|--------|----------|-------------|---------|--------|
| [7:0]  | RESERVED | Reserved.   | 0x28    | R/W    |

Address: 0x47, Default: 0xC0, Name: REG0047

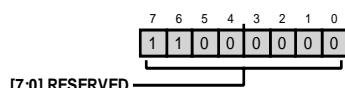



Table 49. Bit Descriptions for REG0047

| Bit(s) | Bit Name | Description | Default | Access |
|--------|----------|-------------|---------|--------|
| [7:0]  | RESERVED | Reserved.   | 0xC0    | R      |

Address: 0x52, Default: 0xF4, Name: REG0052

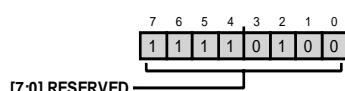



Table 50. Bit Descriptions for REG0052

| Bit(s) | Bit Name | Description | Default | Access |
|--------|----------|-------------|---------|--------|
| [7:0]  | RESERVED | Reserved.   | 0xF4    | R      |

Address: 0x6E, Default: 0x00, Name: REG006E

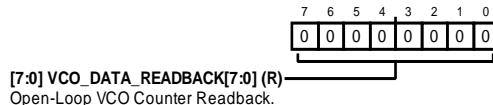



Table 51. Bit Descriptions for REG006E

| Bit(s) | Bit Name               | Description                     | Default | Access |
|--------|------------------------|---------------------------------|---------|--------|
| [7:0]  | VCO_DATA_READBACK[7:0] | Open-Loop VCO Counter Readback. | 0x0     | R      |

Address: 0x6F, Default: 0x00, Name: REG006F



Table 52. Bit Descriptions for REG006F

| Bit(s) | Bit Name                | Description                     | Default | Access |
|--------|-------------------------|---------------------------------|---------|--------|
| [7:0]  | VCO_DATA_READBACK[15:8] | Open-Loop VCO Counter Readback. | 0x0     | R      |

Address: 0x72, Default: 0x32, Name: REG0072

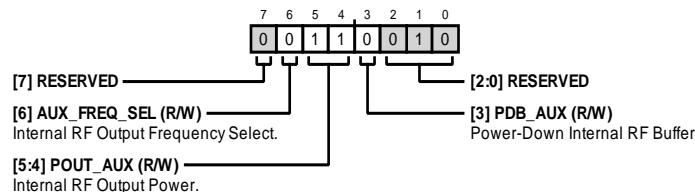



Table 53. Bit Descriptions for REG0072

| Bit(s) | Bit Name     | Description                                                                                                                                                     | Default | Access |
|--------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| 7      | RESERVED     | Reserved.                                                                                                                                                       | 0x0     | R      |
| 6      | AUX_FREQ_SEL | Internal RF Output Frequency Select. This selects the VCO fundamental or divided frequency to the downconversion mixer.<br>0: divided output.<br>1: VCO output. | 0x0     | R/W    |
| [5:4]  | POUT_AUX     | Internal RF Output Power. Sets the power at the auxiliary RF port, which drives the mixer path.<br>0: low power.<br>1: high power.                              | 0x1     | R/W    |
| 3      | PDB_AUX      | Power-Down Internal RF Buffer. This must be set to 1 for normal operation.                                                                                      | 0x1     | R/W    |
| [2:0]  | RESERVED     | Reserved.                                                                                                                                                       | 0x2     | R      |

Address: 0x73, Default: 0x00, Name: REG0073

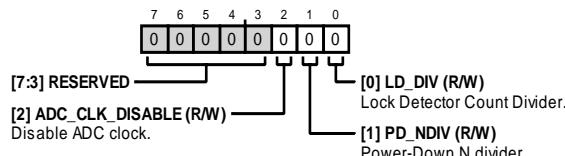



Table 54. Bit Descriptions for REG0073

| Bits  | Bit Name        | Description                                                                                                                                                          | Default | Access |
|-------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| [7:3] | RESERVED        | Reserved.                                                                                                                                                            | 0x0     | R      |
| 2     | ADC_CLK_DISABLE | Disable ADC Clock. ADC_ENABLE setting overwrites this bit.                                                                                                           | 0x0     | R/W    |
| 1     | PD_NDIV         | Power-Down N Divider.                                                                                                                                                | 0x0     | R/W    |
| 0     | LD_DIV          | Lock Detector Count Divider. Divides the lock detector count cycles by 32 so that the LD_COUNT bits in the REG0028 register can be selected as 32, 64, 128, and 256. | 0x0     | R/W    |

Address: 0x7C, Default: 0x00, Name: REG007C

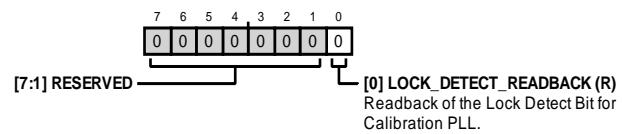



Table 55. Bit Descriptions for REG007C

| Bit(s) | Bit Name             | Description                                          | Default | Access |
|--------|----------------------|------------------------------------------------------|---------|--------|
| [7:1]  | RESERVED             | Reserved.                                            | 0x0     | R      |
| 0      | LOCK_DETECT_READBACK | Readback of the Lock Detect Bit for Calibration PLL. | 0x0     | R      |

## OUTLINE DIMENSIONS

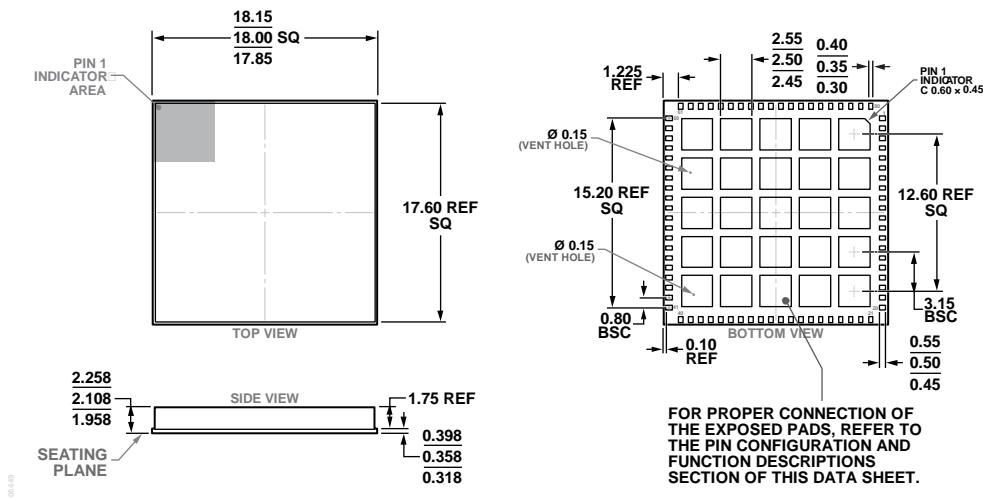



Figure 35. 80-Terminal Chip Array Small Outline No Lead Cavity [LGA\_CAV]  
 18.00 mm × 18.00 mm Body and 2.108 mm Package Height  
 (CE-80-1)  
 Dimensions shown in millimeters

05-02-2019-A

## ORDERING GUIDE

| Model <sup>1</sup> | Temperature Range | Package Description                                           | Package Option |
|--------------------|-------------------|---------------------------------------------------------------|----------------|
| ADF4401ABCEZ       | −25°C to +85°C    | 80-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV] | CE-80-1        |
| EV-ADF4401ASD2Z    |                   | Evaluation Board                                              |                |

<sup>1</sup> Z = RoHS Compliant Part.